• Title/Summary/Keyword: furcation invasion

Search Result 2, Processing Time 0.019 seconds

Effects on the tissue reaction using compomer & Ketac Silver in the maxillary furcation in the beagle dogs (Compomer와 Ketac Silver로 성견 상악 이개부 병소 충전시 조직반응에 미치는 영향)

  • Ryu, Jea-Youn;Lim, Sung-Bin;Chung, Chin-Hyung;Lee, Chong-Heon
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.705-715
    • /
    • 2003
  • Procedures for treatment of molar furcation invasion defects range from open flap debridement, apically repositioned flap surgery, hemisection, tunneling or extraction, to regenerative therapies using bone grafting or guided tissue regenerative therapy, or a combination of both. Several clinical evaluations using regenerative techniques have reported the potential for osseous repair of treated furcation invasions. Regenerative treatment of maxillary molars are more difficult due to the multiple root anatomy and multiple furcation entrances therefore, purpose of this study was to evaluated histologically compomer and Ketac Silver as a barrier in the treatment of a bi-furcated maxillary premolar. Five adult beagle dogs were used in this experiment. With intrasulcular and crestal incision, mucoperiostcal flap was elevated. Following decortication with 1/2 high speed round bur, furcation defect was made on maxillary premolar. 2 month later one premolar was filled with compomer and the other premolar was filled with Ketac Silver. After 4, 8 weeks, the animals were sacrificed by vascular perfusion. Tissue block was excised including the tooth and prepared for light microscope with H-E staining. Results were as follows. 1. Compomer & Ketac Silver restoration were encapsulated fine connective tissue. 2. In 4 weeks, compomer & Ketac Silver restoration slightly infiltrated inflammatory cells but not disturb the new bone or new cementum formation. 3. In 8 weeks, compomer & Ketac Silver restoration were less infiltrated iflammatory cell and encapsulated fine connective tissue. 4. Therefore, compomer & Ketac Silver filling to the grade III maxillary furcations with multiple root anatomy and multiple furcation entrances is possible clinical method and this technique is useful method for maxillary furcation involvement but it is thought that periodic maintenance should be needed

Effects on the Tissue Reaction Using GI Cement in the Maxillary Grade II Furcation in the Beagle Dogs (성견 상악 치근 이개부 병소에 Glass Ionomer Cement 충전 시 조직 반응에 관한 연구)

  • Lee, Yong-Gon;Chung, Chin-Hyung;Lim, Sung-Bin
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.793-803
    • /
    • 2000
  • Procedures for treatment of molar furcation invasion defects range from open flap debridement, apically repositioned flap surgery, hemisection, tunneling or extraction, to regenerative therapies using bone grafting or guided tissue regenerative therapy, or a combination of both. Several clinical evaluations using regenerative techniques have reported the potential for osseous repair of treated furcation invasions. Regenerative treatment of maxillary molars are more difficult due to the multiple root anatomy and multiple furcation entrances therefore, purpose of this study was to evaluated histologically self-curing glass-ionomer cement and light-curing glass-ionomer cement as a barrier in the treatment of a bi-furcated maxillary premolar. Five adult beagle dogs were used in this experiment. With intrasulcular and crestal incision, mucoperiosteal flap was elevated. Following decortication with 1/2 high speed round bur, degree II furcation defect was made on maxillary third(P3), forth(P4) and fifth(P5) premolar. 2 month later experimental group were self-curing glassionomer cement and light-curing glassionomer cement. After 4, 8 weeks, the animals were sacrificed by vascular perfusion. Tissue block was excised including the tooth and prepared for light microscope with Gomori's trichrome staining. Results were as follows. 1. In all experiment group, there were not epithelial down growth and glass ionomer cement were encapsulated connective tissue. 2. In 4 weeks experiment I group slighly infiltrated inflammatory cells but not disturb the new bone or new cementum formation. 3. In 8 weeks, experiment groups I, II were encapsulated fine connective tissue. 4. Therefore glass-ionomer cement filling to the grade III maxillary furcations with multiple root anatomy and multiple furcation entrances were possible clinical methods and this technique is useful method for Maxillary furcation involvement.

  • PDF