• Title/Summary/Keyword: fungal population

Search Result 133, Processing Time 0.028 seconds

Use of an Artificial Neural Network to Construct a Model of Predicting Deep Fungal Infection in Lung Cancer Patients

  • Chen, Jian;Chen, Jie;Ding, Hong-Yan;Pan, Qin-Shi;Hong, Wan-Dong;Xu, Gang;Yu, Fang-You;Wang, Yu-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5095-5099
    • /
    • 2015
  • Background: The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. Materials and Methods: A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. Results: The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05%(200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (${\geq}65$ years), use of antibiotics, low serum albumin concentrations (${\leq}37.18g/L$), radiotherapy, surgery, low hemoglobin hyperlipidemia (${\leq}93.67g/L$), long time of hospitalization (${\geq}14$days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model($0.829{\pm}0.019$)was higher than that of LR model ($0.756{\pm}0.021$). Conclusions: The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.

Effect of Lime Sulfur on Changes of Fungal Diversity in Pear Fallen Leaves (석회유황합제가 배나무 낙엽의 진균 다양성 변화에 미치는 영향)

  • Min, Kwang-Hyun;Song, Jang Hoon;Cho, Baik Ho;Yang, Kwang-Yeol
    • The Korean Journal of Mycology
    • /
    • v.43 no.4
    • /
    • pp.281-285
    • /
    • 2015
  • This study was conducted to examine changes in the fungal community on fallen leaves of pear by treatment with lime sulfur. Although the lime sulfur could reduce the primary inoculum of several pathogens on spring season, the effect of lime sulfur has not been well determined scientifically. Fallen leaves infected by pear diseases in pear orchards in Naju were collected and treated with lime sulfur or water as a control. To determine the fungal diversity from each treatment, rDNA internal transcribed spacer (ITS) regions were analyzed after extraction of fungal genomic DNA from lime sulfur-treated or water-treated fallen leaves, respectively. The most common fungal species were Ascomycota and Basidiomycota in both treated leaves. However, the population dynamics of several fungal species including Alternari sp., Cladosporium sp., and Phomopsis sp., which are known as pear pathogens for skin sooty dapple disease, were quite different from each treated leaves. These results indicated that lime sulfur treatment led to changes of fungal communities on pear fallen leaves and could be applicable as a dormant spray.

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Microbial Population, Aflatoxin Contamination and Predominant Aspergillus Species in Korean Stored Rice

  • Oh, Ji-Yeon;Sang, Mee-Kyung;Oh, Jee-Eun;Lee, Ho-Joung;Ryoo, Mun-Il;Kim, Ki-Deok
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.121-129
    • /
    • 2010
  • We evaluated microbial populations and aflatoxin production in unhulled and white rice from rice processing complexes of the National Agricultural Cooperative Federation in five regions in Korea and identified three predominant Aspergillus species. Fungal and bacterial populations in rice samples were significantly different between regions in 2007. Aflatoxins were also detected and varied at the levels of 2.45 - 3.43 ng per g unhulled rice grain and 1.29 - 2.09 ng per g white rice grain. Unhulled rice generally detected higher level of aflatoxins than white rice regardless of sampling regions; however, no significant differences were found in Anseong and Cheonan in 2005 and Cheonan and Gimpo in 2007. Aflatoxin production between sampling regions was not different regardless of rice type and sampling year. Although the fungal diversity was highly distinct from region to region, three Aspergillus isolates were predominant in the rice samples; thus, representative isolates AC317, AF57, and AF8 were selected and identified based on their morphological and molecular characteristics. Consequently, isolates AC317, AF57, and AF8 were identified as A. candidus, A. flavus, and A. fumigatus, respectively. These fungi can produce mycotoxins that are harmful for consumers and thus it is important to detect and reduce the population of storage fungi in rice.

Indigenous Fungivorous Nematodes Affect the Biocontrol Efficacy of Trichoderma harzianum through Reducing the Hyphal Density

  • Kim, Tae Gwan;Knudsen, Guy R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.815-822
    • /
    • 2021
  • Indigenous fungus-feeding nematodes may adversely affect the growth and activity of introduced biocontrol fungi. Alginate pellets of the biocontrol fungus Trichoderma harzianum ThzID1-M3 and sclerotia of the fungal plant pathogen Sclerotinia sclerotiorum were added to nonsterile soil at a soil water potential of -50 or -1,000 kPa. The biomass of ThzID1-M3, nematode populations, and extent of colonization of sclerotia by ThzID1-M3 were monitored over time. The presence of ThzID1-M3 increased the nematode population under both moisture regimes (p < 0.05), and fungivores comprised 69-75% of the nematode population. By day 5, the biomass of ThzID1-M3b and its colonization of sclerotia increased and were strongly correlated (R2 = 0.98), followed by a rapid reduction, under both regimes. At -50 kPa (the wetter of the two environments), fungal biomass and colonization by ThzID1-M3 were less, in the period from 5 to 20 days, while fungivores were more abundant. These results indicate that ThzID1-M3 stimulated the population growth of fungivorous nematodes, which in turn, reduced the biocontrol ability of the fungus to mycoparasitize sclerotia. However, colonization incidence reached 100% by day 5 and remained so for the experimental period under both regimes, although hyphal fragments disappeared by day 20. Our results suggest that indigenous fungivores are an important constraint for the biocontrol activity of introduced fungi, and sclerotia can provide spatial refuge for biocontrol fungi from the feeding activity of fungivorous nematodes.

Distribution of Fungi in the Sandy Soil of Egyptian Beaches

  • Migahed, Fatma F.
    • Mycobiology
    • /
    • v.31 no.2
    • /
    • pp.61-67
    • /
    • 2003
  • The mycobiota of the sandy soil of Egyptian beaches was investigated in thirty six sand samples collected from nine different localities in Egypt. The filamentous fungi were identified and assigned to thirty one genera and fifty one species. Greater populations as well as a wider spectrum range of fungal genera and species were obtained in sandy soil of Alexandria beach while Balteem beach was the poorest one. The total count of the genus or species was not depended upon cases of isolation. Most of the genera detected belonged to the Deuteromycotina with fewer proportions belonging to the Ascomycotina and Zygomycotina. The genera of highest incidence and their respective numbers of species were: Penicillium(35.72%, 6 species) and Aspergillus(30.28%, 16 species). The species which showed the highest incidence in all cases was P chrysogenum, followed by P citrinum, A. flavus, Chaetomium murorum and Trichoderma viride. A few number of other genera and species were also detected.

Studies on the Population of Toxigenic Fungi in Foodstuffs (III) (각종 실품중의 유독성 진균에 관한 연구 3)

  • Koh, Choon-Myung;Choi, Tae-Joo;Lew, Joon
    • Korean Journal of Microbiology
    • /
    • v.10 no.4
    • /
    • pp.191-194
    • /
    • 1972
  • There were observed the host-parasite relationship between rice grains and contaminating fungi indicated by the fungal penetration degree in the tested rices. The results were as follows ; 1. The fungal penetration could be observed in the outer layer of the rices but couldn't be seen in the starch portin of the tested rices. 2. The Gram staining method was better than the PAS staining method for the observation of fungi penetration into the rices.

  • PDF

Distribution of Alcohol-tolerant Microfungi in Paddy Field Soils

  • Choi, Soon-Young
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.191-195
    • /
    • 2003
  • Ethanol treatment method was attempted for the selective isolation of ethanol-tolerant fungi from two sites of rice paddy fields around Seoul area. The vertical and seasonal fluctuation of the fungal population were also investigated. The ethanol-tolerant fungi were Talaromyces stipitatus, T. flavus var. flavus, T. helicus var. major, Eupenicillium javanicum, Emericellopsis terricolor, Pseudourotium zonatum, Aspergillus flavus, Cladosporium cladosporioides, Penicillium frequentans, P. janthinellum, and P. verruculosum. The most dominant species isolated by this method was T. stipitatus. It was found that the numbers of fungal species and colony forming units(CFUs) of ethanol-tolerant fungi were higher in Ascomycota than in Deuteromycota. A particular tendency appeared the highest CFUs in autumn, but lower in spring and winter. T. stipitatus was the dominant species of ethanol tolerant microfungi. This result would suggest that membrane lipid composition of ethanol-tolerant fungi isolated from the soils may play on important role in the ethanol tolerance.

Population Variations of Cylindrocarpon destructans Causing Root Rot of Ginseng and Soil Microbes in the Soil with Various Moisture Contents (토양수분 함량에 따른 인삼 뿌리썩음병균 Cylindrocarpon destructans 및 토양미생물의 밀도 변화)

  • 박규진;유연현;오승환
    • Korean Journal Plant Pathology
    • /
    • v.13 no.2
    • /
    • pp.100-104
    • /
    • 1997
  • Influence of the moisture content in soils was examined on population variations of soil microbes, including Cylindrocarpon destructans causing root rot of ginseng, in vivo and under the field condition. Fungal populations decreased in soils treated with various moisture contents in vivo as days after the treatment in creased, but there was not a significant difference in the population among other treatments except 135% moisture content (flooding) at 15 weeks after the treatment. In flooded soils populations of total fungi and C. destructans were reduced to 1/10 and 1/50 of initial populations, respectively. There was, however, a little difference in the population of total bacteria or Actinomycetes between before and at 15 weeks after flooding. On the other hand, population variations of bacteria and Actinomycetes were much greater than those of fungi at different intervals after the moisture treatment. Variations of microbial populations in flooded soils under the field condition were similar to those in vivo. Especially, populations of Fusarium and pectolytic bacteria in flooded soils were reduced to 1/100 of populations in nonflooded soils at 170 days after treatment.

  • PDF

Differential Expression of Kidney Proteins in Streptozotocin-induced Diabetic Rats in Response to Hypoglycemic Fungal Polysaccharides

  • Hwang, Hye-Jin;Baek, Yu-Mi;Kim, Sang-Woo;Kumar, G. Suresh;Cho, Eun-Jae;Oh, Jung-Young;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2005-2017
    • /
    • 2007
  • Diabetic nephropathy remains a major cause of morbidity and mortality in the diabetic population and is the leading cause of end-stage renal failure. Despite current therapeutics including intensified glycemic control and blood pressure lowering agents, renal disease continues to progress relentlessly in diabetic patients, albeit at a lower rate. Since synthetic drugs for diabetes are known to have side effects, fungal mushrooms as a natural product come into preventing the development of diabetes. Our previous report showed the hypoglycemic effect of extracellular fungal polysaccharides (EPS) in streptozotocin (STZ)-induced diabetic rats. In this study, we analyzed the differential expression patterns of rat kidney proteins from normal, STZ-induced diabetic, and EPS-treated diabetic rats, to discover diabetes-associated proteins in rat kidney. The results of proteomic analysis revealed that up to 500 protein spots were visualized, of which 291 spots were differentially expressed in the three experimental groups. Eventually, 51 spots were statistically significant and were identified by peptide mass fingerprinting. Among the differentially expressed renal proteins, 10 were increased and 16 were decreased significantly in diabetic rat kidney. The levels of different proteins, altered after diabetes induction, were returned to approximately those of the healthy rats by EPS treatment. A histopathological examination showed that EPS administration restored the impaired kidney to almost normal architecture. The study of protein expression in the normal and diabetic kidney tissues enabled us to find several diabetic nephropathy-specific proteins, such as phospholipids scramblase 3 and tropomyosin 3, which have not been mentioned yet in connection with diabetes.