• 제목/요약/키워드: fungal pathogen

검색결과 340건 처리시간 0.024초

Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea

  • Yun, Hwi-Geon;Kim, Dong-Jun;Gwak, Won-Seok;Shin, Tae-Young;Woo, Soo-Dong
    • Mycobiology
    • /
    • 제45권3호
    • /
    • pp.192-198
    • /
    • 2017
  • The green peach aphid (Myzus persicae), a plant pest, and gray mold disease, caused by Botrytis cinerea, affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae. Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.

Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against Fungal Plant Diseases

  • Ji, Seung Hyun;Paul, Narayan Chandra;Deng, Jian Xin;Kim, Young Sook;Yun, Bong-Sik;Yu, Seung Hun
    • Mycobiology
    • /
    • 제41권4호
    • /
    • pp.234-242
    • /
    • 2013
  • A total of 62 bacterial isolates were obtained from Gomsohang mud flat, Mohang mud flat, and Jeju Island, Republic of Korea. Among them, the isolate CNU114001 showed significant antagonistic activity against pathogenic fungi by dual culture method. The isolate CNU114001 was identified as Bacillus amyloliquefaciens by morphological observation and molecular data analysis, including 16SrDNA and gyraseA (gyrA) gene sequences. Antifungal substances of the isolate were extracted and purified by silica gel column chromatography, thin layer chromatography, and high performance liquid chromatography. The heat and UV ray stable compound was identified as iturin, a lipopeptide (LP). The isolate CNU114001 showed broad spectrum activity against 12 phytopathogenic fungi by dual culture method. The semi purified compound significantly inhibits the mycelial growth of pathogenic fungi (Alternaria panax, Botrytis cinera, Colletotrichum orbiculare, Penicillium digitatum, Pyricularia grisea and Sclerotinia sclerotiorum) at 200 ppm concentration. Spore germ tube elongation of Botrytis cinerea was inhibited by culture filtrate of the isolate. Crude antifungal substance showed antagonistic activity against cucumber scleotiorum rot in laboratory, and showed antagonistic activity against tomato gray mold, cucumber, and pumpkin powdery mildew in greenhouse condition.

Fusarium graminearum의 ZEB2 동형단백질에 의한 지랄레논 생합성 자가조절

  • Park, Ae Ran;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.27-27
    • /
    • 2016
  • The ascomycete fungus Fusarium graminearum is the most common pathogen of Fusarium head blight (FHB), a devastating disease for major cereal crops worldwide. FHB causes significant crop losses by reducing grain yield and quality as well as contaminating cereals with trichothecenes and zearalenone (ZEA) that pose a serious threat to animal health and food safety. ZEA is a causative agent of hyperestrogenic syndrome in mammals and can result in reproductive disorders in farm animals. In F. graminearum, the ZEA biosynthetic cluster is composed of four genes, PKS4, PKS13, ZEB1, and ZEB2, which encode a reducing polyketide synthase, a nonreducing polyketide synthase, an isoamyl alcohol oxidase, and a transcription factor, respectively. Although it is known that ZEB2 primarily acts as a regulator of ZEA biosynthetic cluster genes, the mechanism underlying this regulation remains undetermined. In this study, two isoforms (ZEB2L and ZEB2S) from the ZEB2 gene in F. graminearum were characterized. It was revealed that ZEB2L contains a basic leucine zipper (bZIP) DNA-binding domain at the N-terminus, whereas ZEB2S is an N-terminally truncated form of ZEB2L that lacks the bZIP domain. Interestingly, ZEA triggered the induction of both ZEB2L and ZEB2S transcription. In ZEA producing condition, the expression of ZEB2S transcripts via alternative promoter usage was directly or indirectly initiated by ZEA. Physical interaction between ZEB2L and ZEB2L as well as between ZEB2L and ZEB2S was observed in the nucleus. The ZEB2S-ZEB2S interaction was detected in both the cytosol and the nucleus. ZEB2L-ZEB2L oligomers activated ZEA biosynthetic cluster genes, including ZEB2L. ZEB2S inhibited ZEB2L transcription by forming ZEB2L-ZEB2S heterodimers, which reduced the DNA-binding activity of ZEB2L. This study provides insight into the autoregulation of ZEB2 expression by alternative promoter usage and a feedback loop during ZEA production.

  • PDF

Apoptosis 관련 Bcl-2유전자의 도입을 통한 곰팡이 저항성 형질전환 상추의 육성 (Fungal pathogen protection in transgenic lettuce by expression of a apoptosis related Bcl-2 gene)

  • 서경순;민병환
    • Journal of Plant Biotechnology
    • /
    • 제38권3호
    • /
    • pp.209-214
    • /
    • 2011
  • 본 실험에서는 상추 연산홍에 apoptosis 관련 유전자인 Bcl-2 유전자를 도입하여 내병성 상추의 육성을 하기 위한 목적으로 형질전환을 수행하였다. 상추의 자엽조직을 NPTII-35S Promoter와 Bcl-2 유전자가 삽입된 Agrobacterium GV 3101과 공동배양 한 후 0.1 mg/L NAA, 0.5 mg/L BAP, 100 mg/L Kanamycin, 300 mg/L Lilacillin이 첨가된 MS 배지에서 식물체가 유기되었다. Kanamycin 내성을 가진 식물체들을 PCR, Southern blot 분석을 통해 Bcl-2 유전자가 안정적으로 식물체 genome 안에 삽입되었음을 확인하였다. 100개의 형질전환식물체가 확인되었으며 T1식물체를 채종하였다. T1 종자를 파종하여 Sclerotinia sclerotiorum. 균주를 접종하여 내병성 검정을 실시하였고 그 중 2개의 line에서 내병성을 확인하였다. 이러한 결과를 통하여 인간의 apoptosis에 관련하는 유전자가 식물체 내에서 안정된 발현을 통하여 내병성을 증가시켰음을 밝혔다.

Indigenous Fungivorous Nematodes Affect the Biocontrol Efficacy of Trichoderma harzianum through Reducing the Hyphal Density

  • Kim, Tae Gwan;Knudsen, Guy R.
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.815-822
    • /
    • 2021
  • Indigenous fungus-feeding nematodes may adversely affect the growth and activity of introduced biocontrol fungi. Alginate pellets of the biocontrol fungus Trichoderma harzianum ThzID1-M3 and sclerotia of the fungal plant pathogen Sclerotinia sclerotiorum were added to nonsterile soil at a soil water potential of -50 or -1,000 kPa. The biomass of ThzID1-M3, nematode populations, and extent of colonization of sclerotia by ThzID1-M3 were monitored over time. The presence of ThzID1-M3 increased the nematode population under both moisture regimes (p < 0.05), and fungivores comprised 69-75% of the nematode population. By day 5, the biomass of ThzID1-M3b and its colonization of sclerotia increased and were strongly correlated (R2 = 0.98), followed by a rapid reduction, under both regimes. At -50 kPa (the wetter of the two environments), fungal biomass and colonization by ThzID1-M3 were less, in the period from 5 to 20 days, while fungivores were more abundant. These results indicate that ThzID1-M3 stimulated the population growth of fungivorous nematodes, which in turn, reduced the biocontrol ability of the fungus to mycoparasitize sclerotia. However, colonization incidence reached 100% by day 5 and remained so for the experimental period under both regimes, although hyphal fragments disappeared by day 20. Our results suggest that indigenous fungivores are an important constraint for the biocontrol activity of introduced fungi, and sclerotia can provide spatial refuge for biocontrol fungi from the feeding activity of fungivorous nematodes.

Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato

  • Rattana Pengproh;Thanwanit Thanyasiriwat;Kusavadee Sangdee;Juthaporn Saengprajak;Praphat Kawicha;Aphidech Sangdee
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.430-448
    • /
    • 2023
  • Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.

Lasiodiplodia pseudotheobromae에 의한 장미 가지썩음병의 발생 보고 (First Report of Die-Back on Rose (Rosa hybrida) Caused by Lasiodiplodia pseudotheobromae in Korea)

  • 위정인;백창기;박미정;장태현;박종한
    • 식물병연구
    • /
    • 제23권4호
    • /
    • pp.367-371
    • /
    • 2017
  • 2015년에 태안에서 장미의 가지 썩음 증상과 검은 포자체가 붙어 있는 새로운 증상이 관찰되었다. 이 증상의 원인을 찾기 위해 장미 가지의 썩음 증상에서 균사체를 분리하였다. 분리 균주의 병원성을 검정하였더니 건전한 장미 가지가 썩었으며 처음 발견했던 병징과 일치하였다. 형태학적 특성을 조사하고 분자생물학적 분석을 위하여 병원균을 $25^{\circ}C$에 7일간 배양하였다. 병원균의 균사 생장은 빠르며 균총의 색깔은 흰색에서 잿빛으로 변했다. 광학현미경으로 관찰한 분생포자는 회갈색의 타원모양에 격막이 하나 있으며 크기는 $20-31{\times}11-17{\mu}m$이다. 병원균의 ITS 영역, TEF와 TUB 유전자의 염기서열을 결합하여 근연종과 유연관계를 분석한 결과 Lasiodiplodia pseudotheobromae로 동정되었다. 이에 따라 장미에서 L. pseudotheobromae이 발생시키는 가지 썩음 증상을 장미 가지썩음병으로 명명하여 보고하고자 한다.

오이 덩굴쪼김병균에 대한 오이 근권길항미생물의 분리, 동정 및 길항작용 (Isolation, Identification and Antagonisms of Rhizospheric Antagonists to Cucumber Wilt Pathogen, Fusarium oxysporum f. sp. cucumerinum Owen)

  • 지형진;김희규
    • 한국식물병리학회지
    • /
    • 제3권3호
    • /
    • pp.187-197
    • /
    • 1987
  • 진주근교와 금산, 남지 등의 17개 오이연작재배지역에서 건전식물의 근권토양으로부터 Triple Layer Agar(TLA)법을 변형개량하여, 오이덩굴쪼김병균에 대한 길항균을 효과적으로 분리하였고, 예비실험(in vitro, in vivo)결과에서 길항력이 우수한 세균(15 isolates)과 곰팡이(9 isolates)를 선별하여 동정하였다. 이들 중 Serratia sp., Pseudomaonas fluorescens, P. putida등 세균 3균주와 Gliocladium sp., Trichoderma harzianum, T. viride 등 곰팡이 3균주를 공시하여 얻은 실내실험의 결과는 다음과 같다. Water Agar(WA) 상에서 길하세균에 의한 오이덩굴쪼김병원균의 소형분생포자의 발아율은 $26\~45\%$ 억제 되었으며, 발아관의 길이도 $41\~56\%$ 억제되었는데, P. fluorescens가 그 중 가장 우수한 길항력을 나타내었다. WA상의 대치배양에서 길항곰팡이의 균사가 본병원균의 균사를 Coiling, Penetration, Overgrowing, Lysis 하는 등의 길항현상을 관찰할 수 있었으며, 그 중 T. harzianum이 가장 강력한 길항력을 나타내었다. 배양기의 pH별 길항곰팡이에 의한 오이덩굴쪼김병균의 Lysis정도는 pH4.6에서 가장 높았으며 다음은 3.6, 5.6, 6.6의 순이었는데 pH 6.6에서는 길항현상이 잘 나타나지 않았으나, 길항곰팡이의 후막포자가 다량 형성되었다.

  • PDF

Combined Effect of CO2 andTemperature on Wheat Powdery Mildew Development

  • Matic, Slavica;Cucu, Maria Alexandra;Garibaldi, Angelo;Gullino, Maria Lodovica
    • The Plant Pathology Journal
    • /
    • 제34권4호
    • /
    • pp.316-326
    • /
    • 2018
  • The effect of simulated climate changes by applying different temperatures and $CO_2$ levels was investigated in the Blumeria graminis f. sp. tritici/wheat pathosystem. Healthy and inoculated plants were exposed in single phytotrons to six $CO_2$+temperature combinations: (1) 450 ppm $CO_2/18-22^{\circ}C$ (ambient $CO_2$ and low temperature), (2) 850 ppm $CO_2/18-22^{\circ}C$ (elevated $CO_2$ and low temperature), (3) 450 ppm $CO_2/22-26^{\circ}C$ (ambient $CO_2$ and medium temperature), (4) 850 ppm $CO_2/22-26^{\circ}C$ (elevated $CO_2$ and medium temperature), (5) 450 ppm $CO_2/26-30^{\circ}C$ (ambient $CO_2$ and high temperature), and (6) 850 ppm $CO_2/26-30^{\circ}C$ (elevated $CO_2$ and high temperature). Powdery mildew disease index, fungal DNA quantity, plant death incidence, plant expression of pathogenesis-related (PR) genes, plant growth parameters, carbohydrate and chlorophyll content were evaluated. Both $CO_2$ and temperature, and their interaction significantly influenced powdery mildew development. The most advantageous conditions for the progress of powdery mildew on wheat were low temperature and ambient $CO_2$. High temperatures inhibited pathogen growth independent of $CO_2$ conditions, and no typical powdery mildew symptoms were observed. Elevated $CO_2$ did not stimulate powdery mildew development, but was detrimental for plant vitality. Similar abundance of three PR transcripts was found, and the level of their expression was different between six phytotron conditions. Real time PCR quantification of Bgt was in line with the disease index results, but this technique succeeded to detect the pathogen also in asymptomatic plants. Overall, future global warming scenarios may limit the development of powdery mildew on wheat in Mediterranean area, unless the pathogen will adapt to higher temperatures.

Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana

  • Parasuraman, Paramanantham;Devadatha, B;Sarma, V. Venkateswara;Ranganathan, Sampathkumar;Ampasala, Dinakara Rao;Reddy, Dhanasekhar;Kumavath, Ranjith;Kim, In-Won;Patel, Sanjay K.S.;Kalia, Vipin Chandra;Lee, Jung-Kul;Siddhardha, Busi
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.571-582
    • /
    • 2020
  • Quorum sensing (QS)-mediated infections cause severe diseases in human beings. The control of infectious diseases by inhibiting QS using antipathogenic drugs is a promising approach as antibiotics are proving inefficient in treating these diseases. Marine fungal (Pestalotiopsis sydowiana PPR) extract was found to possess effective antipathogenic characteristics. The minimum inhibitory concentration (MIC) of the fungal extract against test pathogen Pseudomonas aeruginosa PAO1 was 1,000 ㎍/ml. Sub-MIC concentrations (250 and 500 ㎍/ml) of fungal extract reduced QS-regulated virulence phenotypes such as the production of pyocyanin, chitinase, protease, elastase, and staphylolytic activity in P. aeruginosa PAO1 by 84.15%, 73.15%, 67.37%, 62.37%, and 33.65%, respectively. Moreover, it also reduced the production of exopolysaccharides (74.99%), rhamnolipids (68.01%), and alginate (54.98%), and inhibited the biofilm formation of the bacteria by 90.54%. In silico analysis revealed that the metabolite of P. sydowiana PPR binds to the bacterial QS receptor proteins (LasR and RhlR) similar to their respective natural signaling molecules. Cyclo(-Leu-Pro) (CLP) and 4-Hydroxyphenylacetamide (4-HPA) were identified as potent bioactive compounds among the metabolites of P. sydowiana PPR using in silico approaches. The MIC values of CLP and 4-HPA against P. aeruginosa PAO1 were determined as 250 and 125 ㎍/ml, respectively. All the antivirulence assays were conducted at sub-MIC concentrations of CLP (125 ㎍/ml) and 4-HPA (62.5 ㎍/ml), which resulted in marked reduction in all the investigated virulence factors. This was further supported by gene expression studies. The findings suggest that the metabolites of P. sydowiana PPR can be employed as promising QS inhibitors that target pathogenic bacteria.