• Title/Summary/Keyword: fundamental module

Search Result 138, Processing Time 0.02 seconds

Two Dimensional Flexible Body Response of Very Large Floating Structures (거대 부체구조물의 2차원 유연체 해석 및 거동)

  • Namseeg Hong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.4
    • /
    • pp.274-286
    • /
    • 1996
  • Two-dimensional flexible body analysis (hydroelasticity theory) is adopted to a very large floating structure that may be multimodule and extend in the longitudinal direction. The boundary-element method (BEM) and Green function method(GFM) are used to obtain the hydrodynamic coefficients. The structure is considered to be a flexible beam responding to waves in the vertical direction and a consistent formulation for the hydrostatic stiffness is derived. The resulting coupled equations of motion are solved directly. Two designs of the module connectors are considered: a rotationally-flexible hinge connector, and a rotationally-rigid connector Numerical examples are presented to an integrated system of semi-submersibles. The analysis provides basic motions and section forces, which are useful to develop an understanding of the fundamental modes of displacement and force amplitudes for which multi-module VLFSs must be designed. The results show that while the hinge connectors result in greater motion, the rigid connectors increase substantially the sectional moments.

  • PDF

Health Monitoring and Efficient Data Management Method for the Robot Software Components (로봇 소프트웨어 컴포넌트의 실행 모니터링/효율적인 데이터 관리방안)

  • Kim, Jong-Young;Yoon, Hee-Byung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1074-1081
    • /
    • 2011
  • As robotics systems are becoming more complex there is the need to promote component based robot development, where systems can be constructed as the composition and integration of reusable building block. One of the most important challenges facing component based robot development is safeguarding against software component failures and malfunctions. The health monitoring of the robot software is most fundamental factors not only to manage system at runtime but also to analysis information of software component in design phase of the robot application. And also as a lot of monitoring events are occurred during the execution of the robot software components, a simple data treatment and efficient memory management method is required. In this paper, we propose an efficient events monitoring and data management method by modeling robot software component and monitoring factors based on robot software framework. The monitoring factors, such as component execution runtime exception, Input/Output data, execution time, checkpoint-rollback are deduced and the detail monitoring events are defined. Furthermore, we define event record and monitor record pool suitable for robot software components and propose a efficient data management method. To verify the effectiveness and usefulness of the proposed approach, a monitoring module and user interface has been implemented using OPRoS robot software framework. The proposed monitoring module can be used as monitoring tool to analysis the software components in robot design phase and plugged into self-healing system to monitor the system health status at runtime in robot systems.

Turbopump System Performance Design for Conceptual Design of Separate Flow Cycle LRE System (개방형 액체로켓엔진시스템 개념설계를 위한 터보펌프시스템 성능설계)

  • Yang Hee-Sung;Park Byung-Hoon;Kim Won-Ho;Ju Dae-Sung;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.128-133
    • /
    • 2005
  • In this study, performance design programs for components of a turbopump unit (TPU) in a Liquid Rocket Engine (LRE), that has non-cryogenic centrifugal pumps and 1-stage impulse turbine with partial admission nozzle, were developed. The programs were integrated in a TPU module by balancing the mass flow rate for pump-turbine power, and the module was inserted into the LRE system conceptual design program. The fundamental design conditions, satisfying LRE system requirements and minimum mass flow rate condition of gasgenerator, were found and compared with data from a Russian liquid rocket engine.

  • PDF

Neural Theorem Prover with Word Embedding for Efficient Automatic Annotation (효율적인 자동 주석을 위한 단어 임베딩 인공 신경 정리 증명계 구축)

  • Yang, Wonsuk;Park, Hancheol;Park, Jong C.
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.399-410
    • /
    • 2017
  • We present a system that automatically annotates unverified Web sentences with information from credible sources. The system turns to neural theorem proving for an annotating task for cancer related Wikipedia data (1,486 propositions) with Korean National Cancer Center data (19,304 propositions). By switching the recursive module in a neural theorem prover to a word embedding module, we overcome the fundamental problem of tremendous learning time. Within the identical environment, the original neural theorem prover was estimated to spend 233.9 days of learning time. In contrast, the revised neural theorem prover took only 102.1 minutes of learning time. We demonstrated that a neural theorem prover, which encodes a proposition in a tensor, includes a classic theorem prover for exact match and enables end-to-end differentiable logic for analogous words.

Fatigue Behavior of PP-LFT used in FEM Carreir with Variation of Stress Ratio (FEM Carrier용 PP-LFT 소재의 응력비 변화에 따른 피로 거동)

  • Moon, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • Plastics have brought a significant progress in reducing the weight of automotive parts and improving gas emissions by replacing steel parts. The front end module (FEM) carrier, which was made from long glass fiber reinforced polypropylene (PP-LFT), is one of the most successful examples. On the other hand, more research on the fatigue behavior and vibration durability of automotive plastic parts will be needed to improve the long-term reliability. This paper analyzed the durability of the PP-LFT, which is fundamental to fatigue design and analysis of FEM carrier. Various fatigue tests were conducted at different stress ratios to evaluate the relationship between the fatigue life and stress amplitude or mean stress level. In the case of a fixed stress amplitude, the change in fatigue life with the stress ratio was 2~6% larger than the case of fixed maximum stress. Furthermore, this study observed the mechanism of initiation and propagation of the fatigue cracks in PP-LFT by scanning electron microscopy.

Psychometric Analysis of a Persian Version of the European Organization for Research and Treatment of Cancer OG25 Quality of Life Questionnaire in Oesophagogastric Cancer Patients

  • Hesari, Ali Esmaeili;Lari, Mohsen Asadi;Shandiz, Fatemeh Homai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2739-2745
    • /
    • 2014
  • Background: Health-related quality of life (HRQL) is a fundamental outcome in oncology patients and quality of life (QOL) assessment requires clinically relevant questionnaires. The purpose of this study was translation and definition of measurement properties and the clinical validity of Quality of Life Questionnaire (QLQ)-OG25 module in Persian patients with oesophagus, oesophagogastric junction (OGJ) or gastric cancers. Materials and Methods: The translation procedure followed European Organization for Research and Treatment of Cancer (EORTC) guidelines. Both EORTC QLQ-OG25 and a core questionnaire (EORTC QLQ-C30) were administered to patients with oesophagus (150), OG junction (93) and gastric (32) cancer undergoing multi-modal treatments. Convergent and discriminant validity, Cronbach's alpha coefficient and known-groups comparisons were used to examine reliability and validity. Results: In all, 275 patients (mean age 62 years) completed both questionnaires. Compliance rate was high and the questionnaire module was well accepted. We found good reliability for multi-item subscales of QLQ-OG25 (Cronbach's alpha coefficients 0.76-0.89). About 73% had TNM staging and scales distinguished between clinically distinct groups of patients. However, patients in palliative group experienced compromised functional status and worse treatment-associated symptoms than those in the potentially curative group. Test-retest scores were consistent. Multi-trait scaling analysis demonstrated good convergent and discriminant validity. Conclusions: Overall, the Persian version of QLQ-OG25 demonstrated psychometric and clinical validity that supports its application as a supplement to the original tool (EORTC QLQ-C30) when assessing HRQL in patients with upper-gastrointestinal (GI) cancer both in curative and palliative phases.

Hardware Interlocking Security System with Secure Key Update Mechanisms In IoT Environments (IoT 환경에서의 안전한 키 업데이트를 위한 하드웨어 연동 보안 시스템)

  • Saidov, Jamshid;Kim, Bong-Keun;Lee, Jong-Hyup;Lee, Gwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.671-678
    • /
    • 2017
  • Recent advances in Internet of Things (IoT) encourage us to use IoT devices in daily living areas. However, as IoT devices are being ubiquitously used, concerns onsecurity and privacy of IoT devices are getting grown. Key management is an important and fundamental task to provide security services. For better security, we should restrict reusing a same key in sequential authentication sessions, but it is difficult to manually update and memorize keys. In this paper, we propose a hardware security module(HSM) for automated key management in IoT devices. Our HSM is attached to an IoT device and communicates with the device. It provides an automated, secure key update process without any user intervention. The secure keys provided by our HSM can be used in the user and device authentications for any internet services.

Fundamental Experiment to Verify the Resolution of Hetero-core Fiber Optic Sensor for the Prestress Measurement (프리스트레스 측정을 위한 헤테로코어 광파이버 센서의 분해능 검증 기초실험)

  • Park, Eik-Tae;Choi, Kwang-Su;Kim, Tae-Yang;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.259-266
    • /
    • 2018
  • This is the study for developing the hetero-core optical fiber sensors which are purpose to measure the prestress of PSC bridges during the life cycle period. The goal of this study is to improve the resolution of hetero-core sensors. As a result of the test, it is possible to measure the displacement in $2{\mu}m$ increments. In other words, if the length of the sensor module is 30cm, it is possible to measure the prestress variations in 0.2MPa increments at specified compressive strength of concrete(fck) of 40MPa by Hook's Law. So it can be useful for development of a sensor module measuring internal prestress measurement.

Design of Network-Based Induction Motors Fault Diagnosis System Using Redundant DSP Microcontroller with Integrated CAN Module (DSP 마이크로컨트롤러를 사용한 CAN 네트워크 기반 유도전동기고장진단 시스템 설계)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.80-86
    • /
    • 2005
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is includes of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module processes the stator current, voltage, temperatures, vibration signal of the motor.

Optimum Design of Pitch Reducer for Wind Turbine Using Genetic Algorithm (유전 알고리즘을 이용한 풍력발전기용 피치감속기의 최적 설계)

  • Kim, Jeong Gil;Park, Young Jun;Lee, Geun Ho;Nam, Yong Yun;Yang, Woo Yeoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • Planetary gear design is complex because it involves a combination of discrete variables such as module, integer variables such as the number of teeth, and continuous variables such as face width and aspect ratio. Thus, an optimum design technique is needed. In this study, we applied a genetic algorithm to the design optimization of a planetary gear. In this algorithm, tooth root strength and surface durability are assessed with fundamental variables such as the number of teeth, module, pressure angle, and face width. With the help of this technique, gear designers could reduce trial and error in the initial design stages, thus cutting the time required for planetary gear design.