• Title/Summary/Keyword: fundamental equation

Search Result 454, Processing Time 0.029 seconds

Numerical Simulation of Infiltration and Solidification for Squeeze Casting of MMCs (가압주조법을 이용한 금속복합재료 제조공정의 침투와 열전달 해석)

  • Jung C.K.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.250-253
    • /
    • 2004
  • A finite element model is developed for the process of squeeze casting of metal matrix composites. The fluid flow and the heat transfer are fundamental phenomena in squeeze casting. The equations for the clear fluid flow and the flow in porous media are used to simulate the transient metal flow. To describe heat transfer in the solidification of molten aluminum, the energy equation is written in terms of temperature and enthalpy. A direct iteration technique is used to solve the resulting nonlinear algebraic equations. The cooling curves and temperature distribution during infiltration and solidification were calculated for a simplified model with pure aluminum. The developed program can be used for squeeze casting process of complex geometry, boundary conditions and processing parameter optimization.

  • PDF

Hydrodynamic Lubrication Model for Chemical Mechanical Planarization (유체윤활을 고려한 화학기계적 연마 공정에서의 연마대상과 패드 사이의 유동장 해석)

  • 김기현;오수익;전병희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.207-210
    • /
    • 2003
  • The chemical mechanical planarization (CMP) process is a method of planarizing semiconductor wafers with a high degree of success. However, fundamental mechanisms of the process are not fully understood. Several theoretical analyses have been introduced, which are focused on kinematics, von Mises stress distributions and hydrodynamic lubrication aspects. This paper is concerned with hydrodynamic lubrication theory as the chemical mechanical planarization model; the three-dimensional Reynolds equation is applied to predict slurry film thickness and pressure distributions between the pad and the wafer. This paper classifies geometry of wafer into 3 types and focuses on the differences between them.

  • PDF

Study for Fatigue Crack Propagation Behavior of Ti-alloy (Ti 합금의 피로 특성 고찰)

  • 정화일;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.786-789
    • /
    • 1997
  • Ti-6Al-4V has been used widely in biomedical field. But because of its toxicity, the ${\beta}$ stabilizing element, V, in Ti-6Al-4V has been replaced by Nb, Ta. Ti-10Ta-10Nb has been developed for biomedical applications. The fatigue crack propagation behavior of Ti-alloy(Ti-10Ta-10Nb) was investigated, in comparison with that of pure Ti. In order to better understand the fundamental fatigue behavior of Ti-10Ta-10Nb, rotating bending fatigue tests have been carried out. Ti-10Ta-10Nb has a better fatigue strength than pure Ti. In this paper, fatigue life has been predicted with Nisitani's equation of the fatigue crack propagation that can be established by measuring fatigue crack growth rates.

  • PDF

Dynamic Direct and Indirect Buckling Characteristics of Arch by Running Response Spectrum (연속 응답 스펙트럼 분석에 의한 아치의 동적 직접 및 간접 좌굴 특성)

  • Yun, Tae-Young;Kim, Seung-Deog
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.161-168
    • /
    • 2004
  • The dynamic instability of snapping phenomena has been studied by many researchers. Few papers deal with dynamic buckling under loads with periodic characteristics, and the behavior under periodic excitations is expected to be different from behavior under STEP excitations. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidally shaped arch structures are subjected to sinusoidally distributed excitations with pin-ends. The mechanisms of dynamic indirect snapping of shallow arches are especially investigated under not only STEP function excitations but also under sinusoidal harmonic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equation of motion, and examined by Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels.

  • PDF

Simple formulas for the fuel of climbing propeller driven airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.4
    • /
    • pp.367-389
    • /
    • 2015
  • Simple solutions are obtained for the fuel required by internal combustion engine airplanes on trajectories with a constant rate of climb or descent. Three modes of flight are considered: constant speed, constant Mach number and constant angle of attack. Starting from the exact solutions of the equations of motion for the modes of motion considered, approximate solutions are obtained that are much easier to compute while still being quite precise. Simpler formulas are derived for the weight of fuel, speed, altitude, horizontal distance, time to climb, and power required. These formulas represent a new important contribution since they are fundamental for the analysis of aircraft dynamics and thus have direct applications for the analysis of aircraft performances and mission planning.

Theoretical Derivation of the Optimum Rotation Speed of a Desiccant Rotor (이론적 방법에 의한 제습로터 최적 회전속도의 결정)

  • Lee, Dae-Young;Song, Gwi-Eun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.575-582
    • /
    • 2009
  • The optimum rotation speed of a desiccant rotor is studied theoretically based on a theoretical solution to the heat and mass transfer processes in the desiccant rotor. A simple correlation equation for the optimum rotation speed is derived to show the effects of various parameters including the thermo-physical properties, the geometric dimension, and the operating condition of the desiccant rotor. The theoretical result is compared with existing experimental data to validate the linearization and simplification included in the solution procedure. Based on the theoretical solution, the effects of major parameters on the optimum rotation speed are studied and the fundamental mechanism of the influences is investigated.

Estimation of the Unmeasured Unbalance Responses and Identification of Bearing Parameters in Flexible Rotor-Bearing Systems (회전체 베어링계의 불균형응답 간접추정과 베어링 매개변수 규명)

  • 홍성욱;이종원
    • Journal of KSNVE
    • /
    • v.2 no.3
    • /
    • pp.193-202
    • /
    • 1992
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor bearing systems because of it usefulness in balancing and diagnosis as well as identification of parameters involved in rotor bearing systems. However some unbalance responses are not measurable due to the fact that rotor bearing systems are often encapsulated by fixtures or safety protectors. In the present paper, an efficent estimation scheme for unmeasured unbalance responses in rotor bearing systems is developed. The fundamental fearture of the proposed method is characterized by the linear formulae to estimate the unbalance responses from the measured unbalance responses and the finite element auxilliary model equation which is constructed to be identical to the prototype excluding the uncertain parameters such as bearing coefficients. The identification formulae for bearing parameters are also derived by using the unbalance response and the finite elements auxiliary model. Simulation is provided to verify the effectiveness of the proposed method.

  • PDF

Polymker Adsorption Model Using the Flory-Huggins Equation and Asdsorption of Starch (Flory-Huggins 식을 이용한 고분자 흡착 모델 및 전분의 흡착)

  • 현상훈;정한남
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.35-43
    • /
    • 1986
  • The equilibrium dsorption of starch on activated alumina and kaolin was studied to provide the fundamental data for investigating the effect of polymer adsorption on the flocculation of solid particles. The new polymer adsor-ption model(PAH-FH) predicting the adsorption equilibria of polymers on the solid surface has been developed using the solution theory and the concepts of Gibbs dividing surface in conjunction with the Flory-Huggins eq-uation and the adsorption behaviors of polymers were examined by this model The accurate adsorption equilibrium data of starch on alumina and kaolin were determined within the tempera-ture range of 298-318K by the ignition loss method. Using these experimenta data the model developed in this study was evaluated. It was shown that this model could predict the adsorption isotherm more accura-tely than the Langmuir model as well as could describe the characteristics of the adsorption equilibria through model parameters.

  • PDF

Fundamental Study on a New Evaluation Method of The Safety Prefabricated Scaffolds

  • Takahashi, Hiroki;Ohdo, Katsutoshi;Takanashi, Seiji
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • When a new member of a scaffold is developed, it is necessary to follow the standard. Therefore, all scaffolds will assume the same structure. The aim of this study was to establish a new method for evaluating scaffold performance. In the present study, a buckling analysis of prefabricated scaffolds was executed, using the shear rigidity of the vertical and the horizontal frames as parameters. From the results, an equation is proposed for evaluating the strength of prefabricated scaffolds.