• Title/Summary/Keyword: functionally graded plates

Search Result 330, Processing Time 0.021 seconds

Vibration analysis of FG porous rectangular plates reinforced by graphene platelets

  • Zhou, Changlin;Zhang, Zhongxian;Zhang, Ji;Fang, Yuan;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.215-226
    • /
    • 2020
  • The aim of this study is to investigate free vibration of functionally graded porous nanocomposite rectangular plates where the internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. The GPL-reinforced plate is modeled using a semi-analytic approach composed of generalized differential quadrature method (GDQM) and series solution adopted to solve the equations of motion. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. New results reveal the importance of porosity coefficient, porosity distribution, graphene platelets (GPLs) distribution, geometrical and boundary conditions on vibration behavior of porous nanocomposite plates. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Free vibration of FGM plates with porosity by a shear deformation theory with four variables

  • Yousfi, Mahfoud;Atmane, Hassen Ait;Meradjah, Mustapha;Tounsi, Abdelouahed;Bennai, Riadh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.353-368
    • /
    • 2018
  • In this work, a high order hyperbolic shear deformation theory with four variables is presented to study the vibratory behavior of functionally graduated plates. The field of displacement of the theory used in this work is introduced indeterminate integral variables. In addition, the effect of porosity is studied. It is assumed that the material characteristics of the porous FGM plate, varies continuously in the direction of thickness as a function of the power law model in terms of volume fractions of constituents taken into account the homogeneous distribution of porosity. The equations of motion are obtained using the principle of virtual work. An analytical solution of the Navier type for free vibration analysis is obtained for a FGM plate for simply supported boundary conditions. A comparison of the results obtained with those of the literature is made to verify the accuracy and efficiency of the present theory. It can be concluded from his results that the current theory is not only accurate but also simple for the presentation of the response of free vibration and the effect of porosity on the latter.

Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory

  • Arani, A. Ghorbanpour;Cheraghbak, A.;Kolahchi, R.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.489-505
    • /
    • 2016
  • Sinusoidal shear deformation theory (SSDT) is developed here for dynamic buckling of functionally graded (FG) nano-plates. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. In order to present a realistic model, the structural damping of nano-structure is considered using Kelvin-Voigt model. The surrounding elastic medium is modeled with a novel foundation namely as orthotropic visco-Pasternak medium. Size effects are incorporated based on Eringen'n nonlocal theory. Equations of motion are derived from the Hamilton's principle. The differential quadrature method (DQM) in conjunction with Bolotin method is applied for obtaining the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG plate, structural damping and boundary conditions on the dynamic instability of system. The results are compared with those of first order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the dynamic buckling responses of system.

Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory

  • Besseghier, Abderrahmane;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.601-614
    • /
    • 2017
  • In this work, free vibration analysis of size-dependent functionally graded (FG) nanoplates resting on two-parameter elastic foundation is investigated based on a novel nonlocal refined trigonometric shear deformation theory for the first time. This theory includes undetermined integral variables and contains only four unknowns, with is even less than the conventional first shear deformation theory (FSDT). Mori-Tanaka model is employed to describe gradually distribution of material properties along the plate thickness. Size-dependency of nanosize FG plate is captured via the nonlocal elasticity theory of Eringen. By implementing Hamilton's principle the equations of motion are obtained for a refined four-variable shear deformation plate theory and then solved analytically. To show the accuracy of the present theory, our research results in specific cases are compared with available results in the literature and a good agreement will be demonstrated. Finally, the influence of various parameters such as nonlocal parameter, power law indexes, elastic foundation parameters, aspect ratio, and the thickness ratio on the non-dimensional frequency of rectangular FG nanoscale plates are presented and discussed in detail.

Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation

  • Rabia, Benferhat;Tahar, Hassaine Daouadji;Abderezak, Rabahi
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.499-519
    • /
    • 2020
  • The effect of porosity on the thermo-mechanical behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper using new refined hyperbolic shear deformation plate theory. Both even and uneven distribution of porosity are taken into account and the effective properties of FG plates with porosity are defined by theoretical formula with an additional term of porosity. The present formulation is based on a refined higher order shear deformation theory, which is based on four variables and it still accounts for parabolic distribution of the transverse shearing strains and stresses through the thickness of the FG plate and takes into account the various distribution shape of porosity. The elastic foundation is described by the Winkler-Pasternak model. Anew modified power-law formulation is used to describe the material properties of FGM plates in the thickness direction. The closed form solutions are obtained by using Navier technique. The present results are verified in comparison with the published ones in the literature. The results show that the dimensionless and stresses are affected by the porosity volume fraction, constituent volume fraction, and thermal load.

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari;Ramtin, Hassani;Yousef, Gholami;Hessam, Rouhi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.147-161
    • /
    • 2023
  • Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.

Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory

  • Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.117-127
    • /
    • 2022
  • This study investigates the wave propagation in porous functionally graded (FG) sandwich plates subjected to hygrothermal environments. A new simple three-unknown first-ordershear deformation theory (FSDT) incorporating an integral term is utilized in this paper. Only three unknowns are used to formulate the governing differential equation by applying the Hamilton principle. The FG layer of the sandwich plate is modeled using the power-law function with evenly distributed porosities to represent the defects of the manufacturing process. The plate is subjected to nonlinear hygrothermal changes across the thickness. The effects of the power-law exponent, core to thickness ratios, porosity volume, and the relations between volume fraction and wave properties of porous FG plate under the hygrothermal environment are investigated. The results showed that the waves' phase velocities increase linearly with the waves number in the FGM plate. The porosity of the FG materials plate has a noticeable impact on the phase velocity when considering the high ratios of the core layer. It has a negligible effect on small core layers. Finally, it is observed that changing temperatures and moistures do not influence the relationship between the power law and the phase velocity.

Buckling analysis of FG plates via 2D and quasi-3D refined shear deformation theories

  • Lemya Hanifi Hachemi Amar;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Kouider Halim Benrahou;Hind Albalawi;Abdeldjebbar Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.765-780
    • /
    • 2023
  • In this work, a novel combined logarithmic, secant and tangential 2D and quasi-3D refined higher order shear deformation theory is proposed to examine the buckling analysis of simply supported uniform functionally graded plates under uniaxial and biaxial loading. The proposed formulations contain a reduced number of variables compared to others similar solutions. The combined function employed in this study ensures automatically the zero-transverse shear stresses at the free surfaces of the structure. Various models of the material distributions are considered (linear, quadratic, cubic inverse quadratic and power-law). The differentials stability equations are derived via virtual work principle with including the stretching effect. The Navier's approach is applied to solve the governing equations which satisfying the boundary conditions. Several comparative and parametric studies are performed to illustrates the validity and efficacity of the proposed model and the various factors influencing the critical buckling load of thick FG plate.

Elastic buckling performance of FG porous plates embedded between CNTRC piezoelectric patches based on a novel quasi 3D-HSDT in hygrothermal environment

  • Yujie Zhang;Zhihang Guo;Yimin Gong;Jianzhong Shi;Mohamed Hechmi El Ouni;Farhan Alhosny
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.175-189
    • /
    • 2023
  • The under-evaluation structure includes a functionally graded porous (FGP) core which is confined by two piezoelectric carbon nanotubes reinforced composite (CNTRC) layers. The whole structure rests on the Pasternak foundation. Using quasi-3D hyperbolic shear deformation theory, governing equations of a sandwich plate are driven. Moreover, face sheets are subjected to the electric field and the whole model is under thermal loading. The properties of all layers alter continuously along with thickness direction due to the CNTs and pores distributions. By conducting the current study, the results emerged in detail to assess the effects of different parameters on buckling of structure. As instance, it is revealed that highest and lowest critical buckling load and consequently stiffness, is due to the V-A and A-V CNTs dispersion type, respectively. Furthermore, it is revealed that by porosity coefficient enhancement, critical buckling load and consequently, stiffness reduces dramatically. Current paper results can be used in various high-tech industries as aerospace factories.