• 제목/요약/키워드: functional fillers

검색결과 39건 처리시간 0.031초

A형 보튤리늄 톡신의 안면부 미용학적 적용 (Cosmetic Use of Botulinum Toxin Type A in the Face)

  • 강제구
    • 대한후두음성언어의학회지
    • /
    • 제23권2호
    • /
    • pp.111-118
    • /
    • 2012
  • Botulinum toxin is a potent neurotoxin that is produced by the bacterium Clostridium botulinum. The agent causes muscle paralysis by preventing the release of acetylcholine at the neuromuscular junction of striated muscle. Botulinum toxin A (Botox, AllerganInc., Irvine, California) is the most potent of seven distinct toxin subtypes that are produced by the bacterium. The toxin was initially used clinically in the treatment of strabismus caused by hypertonicity of the extraocular muscles and was sub-sequently described in the treatment of multiple disorders of muscular spasticity and dystonia. In treating patients with Botox for blepharospasm, Carruthers and Carruthers [5] noticed an improvement in glabellar rhytids. This ultimately led to the introduction and development of Botox as a mainstay in the treatment of hyperfunctional facial lines in the upper face. Since its approval by the U.S. Food and Drug Administration for the treatment of facial rhytids (2002), botulinum toxin A has expanded into wide-spread clinical use. Forehead, glabellar, and periocular rhytids are the most frequently treated facial regions. Indications for alternative uses for Botox in facial plastic and reconstructive surgery are expanding. These include a variety of well-established procedures that use Botox as an adjunctive agent to enhance results. In addition, Botox injection is finding increased usefulness as an independent modality for facial rejuvenation and rehabilitation. The agent is used beyond its role in facial rhytids as an effective agent in the management of dynamic disorders of the face and neck. Botox injection allows the physician to precisely manipulate the balance between complex and conflicting muscular interactions, thus resetting their equilibrium state and exerting a clinical effect. This article will address some of the new and unique indications on Botox injection in the face (the lower face and neck, combination with fillers). Important points in terms of its clinical relevance will be stressed, such as an understanding of functional facial anatomy, the importance of precise injections, and correct dosing all are critical to obtaining natural outcomes.

  • PDF

고충전 인쇄용지 제조를 위한 중질 탄산칼슘 전처리 기술의 안정성에 관한 연구 (Stability of Pre-treated Fillers for High Loaded Printing Paper)

  • 서영범;최진성;지성길
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.1-6
    • /
    • 2017
  • 인쇄용지에 탄산칼슘을 많이 넣을수록, 즉 고충전 인쇄용지를 만들수록 펄프섬유의 사용량이 줄어들고, 건조비용이 감소함으로 생산비는 절감되며, 온실가스의 배출량도 적어지게 된다. 현재까지 고충전 인쇄용지는 주로 중질탄산칼슘(GCC. ground calcium carbonate)에 기능성고분자를 첨가하여 적절한 크기로 선응집(pre-flocculation)시켜 사용함으로서 기존의 인쇄용지 제조방법에 비해 고충전시에도 인쇄용지의 중요한 특성들인 인장강도의 저하를 줄이고, 평활도를 유지시켜왔다. 하지만 GCC의 선응집체는 만들어진 후 사용하기까지 시간이 지체되면 그 크기와 성질이 변하는 불안정성을 보였다. 본 연구에서는 GCC의 선응집기술을 개량하여 선응집된 GCC사이에 탄산칼슘을 화학적으로 새로 생성시켜 GCC간에 연결을 시도하였으며, 그 결과 안정성이 높은 선응집체가 형성되었고, 이를 HCC (hybrid calcium carbonate)로 명명하였다. HCC는 GCC 선응집체와 같이 종이의 강도를 높이고, 평활도를 유지시켰으며, GCC 선응집체의 단점인 벌크의 저하를 역전시켜 높은 벌크를 형성시키는 장점을 보였다.

고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술 (Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber)

  • 이범재;임기원;지상철;정권영;김태중
    • Elastomers and Composites
    • /
    • 제44권3호
    • /
    • pp.232-243
    • /
    • 2009
  • 근래 고성능 친환경 타이어의 개발요구에 의하여 경제성(낮은 회전 저항)과 안전성(wet traction) 및 내마모성면에서 균형있는 특성을 가지는 타이어 트레드 고무의 합성 제조 기술이 중요하게 대두된다. 이를 위하여 다양한 기능성 용액중합 SBR의 개발과 함께 고무/충전제 간의 상호작용 증진 기술이 학술적으로나 산업적으로 활용되고 있다. 본 고에서는 기존의 카본블랙 고무와 함께 최근 green tire로서 각광 받는 실리카 충전 고무에서 충전제와 상호반응이 가능한 화학적 변성 SBR과 커플링제를 이용한 고성능 타이어 트레드 고무의 합성 제조 기술에 대하여 최근 연구 방향과 함께 작용 메카니즘에 대하여 고찰하였다.

Thermal properties and mechanical properties of dielectric materials for thermal imprint lithography

  • Kwak, Jeon-Bok;Cho, Jae-Choon;Ra, Seung-Hyun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.242-242
    • /
    • 2006
  • Increasingly complex tasks are performed by computers or cellular phone, requiring more and more memory capacity as well as faster and faster processing speeds. This leads to a constant need to develop more highly integrated circuit systems. Therefore, there have been numerous studies by many engineers investigating circuit patterning. In particular, PCB including module/package substrates such as FCB (Flip Chip Board) has been developed toward being low profile, low power and multi-functionalized due to the demands on miniaturization, increasing functional density of the boards and higher performances of the electric devices. Imprint lithography have received significant attention due to an alternative technology for photolithography on such devices. The imprint technique. is one of promising candidates, especially due to the fact that the expected resolution limits are far beyond the requirements of the PCB industry in the near future. For applying imprint lithography to FCB, it is very important to control thermal properties and mechanical properties of dielectric materials. These properties are very dependent on epoxy resin, curing agent, accelerator, filler and curing degree(%) of dielectric materials. In this work, the epoxy composites filled with silica fillers and cured with various accelerators having various curing degree(%) were prepared. The characterization of the thermal and mechanical properties wasperformed by thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rheometer, an universal test machine (UTM).

  • PDF

해양구조물용 silica 기반 내해수성 코팅제의 제조 및 응용 (Preparation and application of silica-based coatings for corrosion protection of marine structures)

  • 이병우
    • 한국결정성장학회지
    • /
    • 제31권3호
    • /
    • pp.137-142
    • /
    • 2021
  • 본 연구에서는 상온경화형 silica-based 코팅제의 제조 및 해양구조물에 적용하여 가혹한 해양환경에서 방식 및 방오 성능 발현을 위한 실용화 개발 연구를 수행하였다. 구조상 외부에 노출된 부분이 많은 해양(플랜트) 구조물은 강한 자외선, 극심한 온도차, 염수에 의한 부식 등 가혹한 해양환경에 고립되어 운용된다. 이러한 환경 하에서는 쉽게 열화 되고 파도 등 물리적 자극에도 쉽게 침식되는 유기계 페인트들은 그 역할을 제대로 할 수 없다. 해양구조물에 치밀한 세라믹 코팅을 형성시킬 경우 녹이 발생하지 않고 경도가 높아 시설물을 해수환경 하에서도 치밀하게 보호할 수 있다. 세라믹 코팅제의 경우 그 기능의 장점들로 인해 해양 구조물에서 그 용도와 적용범위는 크게 증진될 수 있을 것이다. 따라서 colloidal silica를 기반으로 실란계 커플링제, 경화제 및 세라믹 충진제로 구성된 silica-based 코팅제 조성개발과 해수중 방식 및 방오용 보호코팅제로의 응용에 대해 연구하였다.

반도체 및 전자패키지의 방열기술 동향 (Heat Dissipation Trends in Semiconductors and Electronic Packaging)

  • 문석환;최광성;엄용성;윤호경;주지호;최광문;신정호
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

열전도성 입자를 활용한 시트용 점착제의 점착 특성과 방열특성 연구 (Comparative Analysis of Heat Sink and Adhesion Properties of Thermal Conductive Particles for Sheet Adhesive)

  • 김영수;박상하;최정우;공이성;윤관한;민병길;이승한
    • 한국염색가공학회지
    • /
    • 제28권1호
    • /
    • pp.48-56
    • /
    • 2016
  • Improvement of heat sink technology related to the continuous implementation performance and extension of device-life in circumstance of easy heating and more compact space has been becoming more important issue as multi-functional integration and miniaturization trend of electronic gadgets and products has been generalized. In this study, it purposed to minimize of decline of the heat diffusivity by gluing polymer through compounding of inorganic particles which have thermal conductive properties. We used NH-9300 as base resin and used inorganic fillers such as silicon carbide(SiC), aluminum nitride(AlN), and boron nitride(BN) to improve heat diffusivity. After making film which was made from 100 part of acrylic resin mixed hardener(1.0 part more or less) with inorganic particles. The film was matured at $80^{\circ}C$ for 24h. Diffusivity were tested according to sorts of particles and density of particles as well as size and structure of particle to improve the effect of heat sink in view of morphology assessing diffusivity by LFA(Netzsch/LFA 447 Nano Flash) and adhesion strength by UTM(Universal Testing Machine). The correlation between diffusivity of pure inorganic particles and composite as well as the relation between density and morphology of inorganic particles has been studied. The study related morphology showed that globular type had superior diffusivity at low density of 25% but on the contarary globular type was inferior to non-globular type at high density of 80%.

충진물로 PEI-GO@ZIF-8를 사용한 PEBAX 혼합막의 CO2 분리 성능 (CO2 Separation Performance of PEBAX Mixed Matrix Membrane Using PEI-GO@ZIF-8 as Filler)

  • 이은선;홍세령;이현경
    • 멤브레인
    • /
    • 제33권1호
    • /
    • pp.23-33
    • /
    • 2023
  • 본 연구에서는 PEBAX 2533에 합성된 PEI-GO@ZIF-8의 함량을 달리 첨가하여 혼합막을 제조하고 N2와 CO2의 투과 특성을 연구하였다. PEBAX/PEI-GO@ZIF-8 혼합막의 N2 투과도는 PEI-GO@ZIF-8 함량이 증가함에 따라 감소하였고, CO2 투과도는 PEI-GO@ZIF-8 함량에 따라 다른 경향을 보였는데 순수 PEBAX 막에서 PEI-GO@ZIF-8 0.1 wt%까지 CO2 투과도는 증가하다가 그 이후의 함량에서는 감소하였다. PEI-GO@ZIF-8 0.1 wt% 혼합막은 CO2 투과도 221.9 Barrer, CO2/N2 선택도는 60.0으로, 제조된 혼합막들 중 CO2 투과도와 CO2/N2 선택도가 향상되어 가장 높은 투과 특성을 보였고 Robeson upper-bound에 도달하는 결과를 얻었다. 이는 충진물이 PEBAX 내에 고루 분산되면서 CO2와 친화적인 상호작용을하는 GO의 -COOH, -O-, -OH 작용기와 PEI에 결합된 아민기 그리고 CO2에 대해 gate-opening 현상이 일어나는 ZIF-8의 영향 때문이다.

Modern Paper Quality Control

  • Olavi Komppa
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2000년도 제26회 펄프종이기술 국제세미나
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.