• Title/Summary/Keyword: function approximations

Search Result 124, Processing Time 0.026 seconds

Error Probability Expressions for Frame Synchronization Using Differential Correlation

  • Kim, Sang-Tae;Kim, Jae-Won;Shin, Dong-Joon;Chang, Dae-Ig;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.582-591
    • /
    • 2010
  • Probabilistic modeling and analysis of correlation metrics have been receiving considerable interest for a long period of time because they can be used to evaluate the performance of communication receivers, including satellite broadcasting receivers. Although differential correlators have a simple structure and practical importance over channels with severe frequency offsets, closedform expressions for the output distribution of differential correlators do not exist. In this paper, we present detection error probability expressions for frame synchronization using differential correlation, and demonstrate their accuracy over channel parameters of practical interest. The derived formulas are presented in terms of the Marcum Q-function, and do not involve numerical integration, unlike the formulas derived in some previous studies. We first determine the distributions and error probabilities for single-span differential correlation metric, and then extend the result to multispan differential correlation metric with certain approximations. The results can be used for the performance analysis of various detection strategies that utilize the differential correlation structure.

Numerical Optimization for Performance Improvement of a Tunnel Ventilation Jet fan (터널 환기용 제트홴의 성능 향상을 위한 수치최적화)

  • Kim, Joon-Hyung;Kim, Jin-Hyuk;Kim, Kwang-Yong;Yoon, Joon-Yong;Choi, Young-Seok;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.63-68
    • /
    • 2011
  • This paper presents an optimization procedure for performance improvement of a tunnel ventilation jet fan. Optimization techniques based on response surface approximation (RSA) are employed to improve the aerodynamic performance of a tunnel ventilation jet fan. For numerical analysis, three-dimensional Renolds- averaged Navier-Stokes (RANS) equations with shear stress transport turbulence model are discretized by using finite volume approximations and solved on hexahedral grids to evaluate the total efficiency at the operating condition as the objective function. Four geometric variables defining the meridional length and the thickness profile at the hub and shroud in the jet fan rotor are selected as design variables for the numerical optimization. The results of the numerical optimization show that the total efficiency of the optimized model is significantly improved in comparison with the base model.

Optimization of Stacking Line and Blade Profile for Design of Axial Flow Fan Blade (중첩선과 단면형상을 고려한 축류 송풍기 날개의 최적설계)

  • Samad, Abdus;Lee, Ki-Sang;Jung, Sang-Ho;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.420-423
    • /
    • 2008
  • This present work is to find optimum design of a NACA65 axial fan blade with weighted average surrogate model. The numerical analysis by Reynolds-average Navier-Stokes equations with shear stress turbulence(SST) is discretized by finite volume approximations and solved on hexahedral grids for flow analysis. The blade aerodynamic shape is modified by six design variables for the optimization. The blade profile as well as stacking line is modified to enhance blade total efficiency. Six design variables, airfoil maximum camber, maximum camber location, leading edge radius, trailing edge radius, lean angle at 50% span and lean angle at 100% span, are selected for blade profile to enhance the total efficiency. The PBA model which is basically weighted average of the basis surrogates is used to find the optimal design in the design space from the constructed response surface model for the objective function. By the optimization, the total efficiency is increased by 1.4%.

  • PDF

Development of Continuum Equations and Finite Element Method Program for Composite Systems (복합체에 대한 연속체 방정식 및 유한요소 프로그램의 개발)

  • Lim, Chong Kyun;Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.155-166
    • /
    • 1988
  • An "equivalent homogeneous, orthotropic" model that includes edge effects and an accompanying finite element analysis is presented for elastomeric bearings. The model is developed for two-dimensional configurations with horizontal layers, and for linear, elastic, small deformation conditions. The equivalent homogeneous theory, in addition to capturing the overall response characteristics of the layered elastomeric bearing system, approximately models the important edge effects, which occur at and near boundaries that cut the layers, and the stress concentrations at layer interfaces. The primary dependent variables for the theory have been selected such that the highest derivatives appearing in the strain energy function are first-order, thus requiring only $C_0$ continuity of the finite element approximations. As a result, the finite element analysis is simple and computationally efficient. Numerical examples are presented to verify the theory and to illustrate potential applications of the analysis.

  • PDF

Time domain buffeting analysis of long suspension bridges under skew winds

  • Liu, G.;Xu, Y.L.;Zhu, L.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.421-447
    • /
    • 2004
  • This paper presents a time domain approach for predicting buffeting response of long suspension bridges under skew winds. The buffeting forces on an oblique strip of the bridge deck in the mean wind direction are derived in terms of aerodynamic coefficients measured under skew winds and equivalent fluctuating wind velocities with aerodynamic impulse functions included. The time histories of equivalent fluctuating wind velocities and then buffeting forces along the bridge deck are simulated using the spectral representation method based on the Gaussian distribution assumption. The self-excited forces on an oblique strip of the bridge deck are represented by the convolution integrals involving aerodynamic impulse functions and structural motions. The aerodynamic impulse functions of self-excited forces are derived from experimentally measured flutter derivatives under skew winds using rational function approximations. The governing equation of motion of a long suspension bridge under skew winds is established using the finite element method and solved using the Newmark numerical method. The proposed time domain approach is finally applied to the Tsing Ma suspension bridge in Hong Kong. The computed buffeting responses of the bridge under skew winds during Typhoon Sam are compared with those obtained from the frequency domain approach and the field measurement. The comparisons are found satisfactory for the bridge response in the main span.

Electromagnetic Wave Scattering from a Perfectly Conducting Random Rough Surface with Considering the Edge Effect (가장자리 효과가 고려된 임의의 기복을 가진 완전도체 표면에서의 전자파 산란)

  • 최동묵;김채영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3B
    • /
    • pp.244-250
    • /
    • 2002
  • In this paper, rile scattered field from a random rough perfectly conducting surface by method of moment(MoM) was computed. A one-dimensional random rough surface predetermined statistical properties was generated by a digital computer. The number of surface realization for the computed field and the width of surface realization are set to be 100, 80 λ, respectively. To eliminate the scattering from the ends of the surface, the Gaussian taper function is used. Using Monte Carlo technique, we calculated hi-static scattering and back scattering coefficient. In order to verify the result by MoM we compare the MoM results with those of Kirchhoff approximations, which show good agreement between them.

Non-grey Radiative Transfer in the Solar Surface Convection

  • Bach, Kie-Hunn;Kim, Yong-Cheol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2011
  • Combining a detailed non-grey radiative transfer computation with the three dimensional hydrodynamics, we investigate a reliable numerical scheme for turbulent convection in the solar surface. The solar photosphere is the extremely turbulent region composed of partly ionized compressible gases in high temperature. Especially, the super adiabatic layer (SAL) near the solar photosphere is the shallow transition region where the energy transport varies steeply from convection to radiation. In order to describe physical processes accurately, a detailed treatment of radiative transfer should be considered as well as the high resolution computation of fluid dynamics. For a direct computation of radiation fields, the Accelerated Lambda Iteration (ALI) methods have been applied to hydrodynamical medium, incorporating the Opacity Distribution Function (ODF) as a realistic schemes for non-grey problems. Computational domain is the rectangular box of dimensions $42{\times}3Mn$ with the resolution of $1202{\times}190$ meshed grids, which covers several granules horizontally and 8 ~ 9 pressure scale heights vertically. During several convective turn-over times, the 3-D snapshots have been compiled with a second order accuracy. In addition, our radiation-hydrodynamical computation has been compared with the classical approximations such as grey atmospheres and Eddington approximation.

  • PDF

An Analytical Model of the First Eigen Energy Level for MOSFETs Having Ultrathin Gate Oxides

  • Yadav, B. Pavan Kumar;Dutta, Aloke K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.203-212
    • /
    • 2010
  • In this paper, we present an analytical model for the first eigen energy level ($E_0$) of the carriers in the inversion layer in present generation MOSFETs, having ultrathin gate oxides and high substrate doping concentrations. Commonly used approaches to evaluate $E_0$ make either or both of the following two assumptions: one is that the barrier height at the oxide-semiconductor interface is infinite (with the consequence that the wave function at this interface is forced to zero), while the other is the triangular potential well approximation within the semiconductor (resulting in a constant electric field throughout the semiconductor, equal to the surface electric field). Obviously, both these assumptions are wrong, however, in order to correctly account for these two effects, one needs to solve Schrodinger and Poisson equations simultaneously, with the approach turning numerical and computationally intensive. In this work, we have derived a closed-form analytical expression for $E_0$, with due considerations for both the assumptions mentioned above. In order to account for the finite barrier height at the oxide-semiconductor interface, we have used the asymptotic approximations of the Airy function integrals to find the wave functions at the oxide and the semiconductor. Then, by applying the boundary condition at the oxide-semiconductor interface, we developed the model for $E_0$. With regard to the second assumption, we proposed the inclusion of a fitting parameter in the wellknown effective electric field model. The results matched very well with those obtained from Li's model. Another unique contribution of this work is to explicitly account for the finite oxide-semiconductor barrier height, which none of the reported works considered.

Natural Frequency of 2-Dimensional Heaving Circular Cylinder: Time-Domain Analysis (상하동요하는 2차원 원주의 고유진동수: 시간 영역 해석)

  • Kim, Ki-Bum;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.224-231
    • /
    • 2013
  • The concept of the natural frequency is useful for understanding the characters of oscillating systems. However, when a circular cylinder floating horizontally on the water surface is heaving, due to the hydrodynamic forces, the system is not governed by the equation like that of the harmonic one. In this paper, in order to shed some lights on the more correct use of the concept of the natural frequency, a problem of the heaving circular cylinder is analyzed in the time domain. The equation of motion, an integro-differential equation, was derived following the fashion of Cummins (1962), and its coefficients including the retardation function were obtained using the numerical solution of Lee (2012). The equation was solved numerically, and the experiment was also carried out in the CNU flume. Using our numerical and experimental results, the natural frequency was defined as its average value given by the motion data excluding those of the initial stage. Our results were then compared with those of the existing investigations such as Maskell and Ursell (1970), Ito (1977) and Yeung (1982) as well as the newly obtained results of Lee (2012). Comparison showed that the natural frequency obtained here agrees well with that of Lee (2012), which was found through the frequency domain analysis. It was also shown that the approximation of heaving motion by a damped harmonic oscillation, which was regarded as suitable by most previous investigators, is not physically suitable for the reason that can be clearly shown through comparing the shape of MCFRs(Modulus of Complex Frequency Response). Furthermore, we found that although the previous approximations yield the damping ratio significantly different from our result the magnitude of natural frequency is not much different from our result.

A Polynomial-based Study on the Protection of Consumer Privacy (소비자 프라이버시 보호에 관한 다항식 기반 연구)

  • Piao, Yanji;Kim, Minji
    • Journal of Information Technology Services
    • /
    • v.19 no.1
    • /
    • pp.145-158
    • /
    • 2020
  • With the development and widespread application of online shopping, the number of online consumers has increased. With one click of a mouse, people can buy anything they want without going out and have it sent right to the doors. As consumers benefit from online shopping, people are becoming more concerned about protecting their privacy. In the group buying scenario described in our paper, online shopping was regarded as intra-group communication. To protect the sensitive information of consumers, the polynomial-based encryption key sharing method (Piao et al., 2013; Piao and Kim, 2018) can be applied to online shopping communication. In this paper, we analyze security problems by using a polynomial-based scheme in the following ways : First, in Kamal's attack, they said it does not provide perfect forward and backward secrecy when the members leave or join the group because the secret key can be broken in polynomial time. Second, for simultaneous equations, the leaving node will compute the new secret key if it can be confirmed that the updated new polynomial is recomputed. Third, using Newton's method, attackers can successively find better approximations to the roots of a function. Fourth, the Berlekamp Algorithm can factor polynomials over finite fields and solve the root of the polynomial. Fifth, for a brute-force attack, if the key size is small, brute force can be used to find the root of the polynomial, we need to make a key with appropriately large size to prevent brute force attacks. According to these analyses, we finally recommend the use of a relatively reasonable hash-based mechanism that solves all of the possible security problems and is the most suitable mechanism for our application. The study of adequate and suitable protective methods of consumer security will have academic significance and provide the practical implications.