• Title/Summary/Keyword: full-search algorithm

Search Result 236, Processing Time 0.307 seconds

DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments

  • Chao, Nan;Liu, Yong-kuo;Xia, Hong;Peng, Min-jun;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.825-836
    • /
    • 2019
  • One of the most challenging safety precautions for workers in dynamic, radioactive environments is avoiding radiation sources and sustaining low exposure. This paper presents a sampling-based algorithm, DL-RRT*, for minimum dose walk-path re-planning in radioactive environments, expedient for occupational workers in nuclear facilities to avoid unnecessary radiation exposure. The method combines the principle of random tree star ($RRT^*$) and $D^*$ Lite, and uses the expansion strength of grid search strategy from $D^*$ Lite to quickly find a high-quality initial path to accelerate convergence rate in $RRT^*$. The algorithm inherits probabilistic completeness and asymptotic optimality from $RRT^*$ to refine the existing paths continually by sampling the search-graph obtained from the grid search process. It can not only be applied to continuous cost spaces, but also make full use of the last planning information to avoid global re-planning, so as to improve the efficiency of path planning in frequently changing environments. The effectiveness and superiority of the proposed method was verified by simulating radiation field under varying obstacles and radioactive environments, and the results were compared with $RRT^*$ algorithm output.

A Diamond Web-grid Search Algorithm Combined with Efficient Stationary Block Skip Method for H.264/AVC Motion Estimation (H.264/AVC 움직임 추정을 위한 효율적인 정적 블록 스킵 방법과 결합된 다이아몬드 웹 격자 탐색 알고리즘)

  • Jeong, Chang-Uk;Choi, Jin-Ku;Ikenaga, Takeshi;Goto, Satoshi
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.49-60
    • /
    • 2010
  • H.264/AVC offers a better encoding efficiency than conventional video standards by adopting many new encoding techniques. However, the advanced coding techniques also add to the overall complexity for H.264/AVC encoder. Accordingly, it is necessary to perform optimization to alleviate the level of complexity for the video encoder. The amount of computation for motion estimation is of particular importance. In this paper, we propose a diamond web-grid search algorithm combined with efficient stationary block skip method which employs full diamond and dodecagon search patterns, and the variable thresholds are used for performing an effective skip of stationary blocks. The experimental results indicate that the proposed technique reduces the computations of the unsymmetrical-cross multi-hexagon-grid search algorithm by up to 12% while maintaining a similar PSNR performance.

An Adaptive Hexagon Based Search for Fast Motion Estimation (고속 움직임 추정을 위한 적응형 육각 탐색 방법)

  • 전병태;김병천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.828-835
    • /
    • 2004
  • An adaptive hexagon based search(AHBS) algorithm is proposed in this paper to perform block motion estimation in video coding. The AHBS evaluates the value of a given objective function starting from a diamond-shaped checking block and then continues its process using two hexagon-shaped checking blocks until the minimum value is found at the center of checking blocks. Also, the determination of which checking block is used depends on the position of minimum value occurred in previous searching step. The AHBS is compared with other fast searching algorithms including full search(FS). Experimental results show that the proposed algorithm provides competitive performance with slightly reduced computational complexity.

Fast Multi-Reference Frame Motion Estimation Algorithm Using a Relation of Motion Vector with Distance of Each Reference Frame (움직임 벡터와 참조 프레임간의 거리를 이용한 고속 다중 참조 프레임 움직임 추정)

  • Byun, Ju-Won;Choi, Jin-Ha;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.69-76
    • /
    • 2010
  • This paper proposed a new fast multi-reference frame motion estimation algorithm. The proposed algorithm reduces search areas of motion estimation using a linear relation of motion vector with distance of each reference frame. New algorithm executes full search area motion estimation in reference frame 0 and reference frame 1. After that, search areas in reference frame 2, reference frame 3 and reference frame 4 are minimized by distance of each reference frame and results of motion estimation in reference frame 0 and reference frame 1. The proposed algorithm does not use a threshold value which is obstacle of hardware implementation and processing time schedule. Also, it reduced computation quantity of multi-reference motion estimation. Hardware implementation of multi-reference frame motion estimation is possible by these features. Simulation results show that PSNR drop and bitrate increase of proposed algorithm are lower than those of previous fast multi-reference frame motion estimation algorithm The number of computation of new algorithm is reduced 52.5% and quality of result is negligible when compared with full search area motion estimation which has 5 reference frames.

Adaptive Pattern Search for Fast Block-Matching Motion Estimation (고속 블록 정합 움직임 추정을 위한 적응적 패턴 탐색)

  • Kwak, Sung-Keun
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.987-992
    • /
    • 2004
  • There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of previous block. In this paper, we propose the improved diamond search pattern using an motion vector prediction candidate search point by the predicted motion information from the same block of the previous frame. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improves as high as high as 14~24% in terms of average number of search point per motion vector estimation and improved about 0.02~0.37dB on an average except the full search(FS) algorithm.

  • PDF

Fast Motion Estimation Based on a Modified Median Operation for Efficient Video Compression

  • Kim, Jongho
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • Motion estimation is a core part of most video compression systems since it directly affects the output video quality and the encoding time. The full search (FS) technique gives the highest visual quality but has the problem of a significant computational load. To solve this problem, we present in this paper a modified median (MMED) operation and advanced search strategies for fast motion estimation. The proposed MMED operation includes a temporally co-located motion vector (MV) to select an appropriate initial candidate. Moreover, we introduce a search procedure that reduces the number of thresholds and simplifies the early termination conditions for the determination of a final MV. The experimental results show that the proposed approach achieves substantial speedup compared with the conventional methods including the motion vector field adaptive search technique (MVFAST) and predictive MVFAST (PMVFAST). The proposed algorithm also improves the PSNR values by increasing the correlation between the MVs, compared with the FS method.

Hexagon-shape Line Search Algorithm for Fast Motion Estimation on Media Processor (미디어프로세서 상의 고속 움직임 탐색을 위한 Hexagon 모양 라인 탐색 알고리즘)

  • Jung Bong-Soo;Jeon Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.55-65
    • /
    • 2006
  • Most of fast block motion estimation algorithms reported so far in literatures aim to reduce the computation in terms of the number of search points, thus do not fit well with multimedia processors due to their irregular data flow. For multimedia processors, proper reuse of data is more important than reducing number of absolute difference operations because the execution cycle performance strongly depends on the number of off-chip memory access. Therefore, in this paper, we propose a Hexagon-shape line search (HEXSLS) algorithm using line search pattern which can increase data reuse from on-chip local buffer, and check sub-sampling points in line search pattern to reduce unnecessary SAD operation. Our experimental results show that the prediction error (MAE) performance of the proposed HEXSLS is similar to that of the full search block matching algorithm (FSBMA), while compared with the hexagon-based search (HEXBS), the HEXSLS outperforms. Also the proposed HEXSLS requires much lesser off-chip memory access than the conventional fast motion estimation algorithm such as the hexagon-based search (HEXBS) and the predictive line search (PLS). As a result, the proposed HEXSLS algorithm requires smaller number of execution cycles on media processor.

An Adaptive Block Matching Motion Estimation Method Using Optical Flow (광류를 이용한 적응적인 블록 정합 움직임 추정 기법)

  • Kim, Kyoung-Kyoo;Park, Kyung-Nam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.1
    • /
    • pp.57-67
    • /
    • 2008
  • In this paper, we present an adaptive block matching motion estimation using optical flow. In the proposed algorithm, we calculate the temporal and spatial gradient value for each pixel value from tile differential filter, and estimate the optical flow which is used to decide the location and the size of the search region from the gradient values by least square optical flow algorithm. In particular, the proposed algorithm showed a excellent performance with fast and complex motion sequences. From the computer simulation for various motion characteristic sequences. The proposed algorithm shows a significant enhancement of PSNR over previous blocking matching algorithms.

  • PDF

Fast Motion Estimation Algorithm using Selection of Candidates and Stability of Optimal Candidates (후보 선별과 최적후보 안정성을 이용한 고속 움직임 예측 알고리즘)

  • Kim, Jong Nam
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.628-635
    • /
    • 2018
  • In this paper, we propose a fast motion estimation algorithm which is important in video encoding. So many fast motion estimation algorithms have been published for improving prediction quality and computational reduction. In the paper, we propose an algorithm that reduces unnecessary computation, while almost keeping prediction quality compared with the full search algorithm. The proposed algorithm calculates the sum of partial block matching error for each candidate, selects the candidates for the next step, compares the stability of optimal candidates with minimum error, and finds optimal motion vectors by determining the progress of the next step. By doing that, we can find the minimum error point as soon as possible and obtain fast computational speed by reducing unnecessary computations. Additionally, the proposed algorithm can be used with conventional fast motion estimation algorithms and prove it in the experimental results.

A Fast and Low-complexity Motion Estimation for UHD HEVC (초고화질 영상처리를 위한 HEVC 표준에 적합한 고속 및 저복잡도 움직임 예측기에 대한 연구)

  • Kim, Sungoh;Park, Chansik;Chun, Hyungju;Kim, Jaemoon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.808-815
    • /
    • 2013
  • In this paper, we propose a novel fast and low-complexity Motion Estimation (ME) algorithm for Ultra High Definition (UHD) High Efficiency Video Coding (HEVC). Motion estimation occupies 77~81% of the amount of computation in HEVC. After all, the main key of video codec implementation is to find a fast and low-complexity motion estimation algorithm and architecture. We analyze the previous motion estimation algorithms and propose three optimal algorithm to reduce the computation proportion for HEVC. The proposed algorithm uses only 0.36% of the amount of operations compared to full search algorithm while maintaining compression performance with slight loss of 1.1%.