• Title/Summary/Keyword: full-scale steel structure

Search Result 105, Processing Time 0.023 seconds

Loading capacity evaluation of composite box girder with corrugated webs and steel tube slab

  • He, Jun;Liu, Yuqing;Xu, Xiaoqing;Li, Laibin
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.501-524
    • /
    • 2014
  • This paper presents a type of composite box girder with corrugated webs and concrete filled steel tube slab to overcome cracking on the web and reduce self-weight. Utilizing corrugated steel web improves the efficiency of prestressing introduced into the top and bottom slabs due to the accordion effect. In order to understand the loading capacity of such new composite structure, experimental and numerical analyses were conducted. A full-scale model was loaded monotonically to investigate the deflection, strain distribution, loading capacity and stiffness during the whole process. The experimental results show that test specimen has enough loading capacity and ductility. Based on experimental works, a finite element (FE) model was established. The load-displacement curves and stress distribution predicted by FE model agree well with that obtained from experiments, which demonstrates the accuracy of proposed FE model. Moreover, simplified theoretical analysis was conducted depending on the assumptions which were confirmed by the experimental and numerical results. The simplified analysis results are identical with the tested and numerical results, which indicate that simplified analytical model can be used to predict the loading capacity of such composite girder accurately. All the findings of present study may provide reference for the application of such structure in bridge construction.

Behaviors of novel sandwich composite beams with normal weight concrete

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.599-615
    • /
    • 2021
  • The ultimate strength behaviour of sandwich composite beams with J-hooks and normal weight concrete (SCSSBJNs) are studied through two-point loading tests on ten full-scale SCSSBJNs. The test results show that the SCSSBJN with different parameters under two-point loads exhibits three types of failure modes, i.e., flexure, shear, and combined shear and flexure mode. SCSSBJN failed in different failure modes exhibits different load-deflection behaviours, and the main difference of these three types of behaviours exist in their last working stages. The influences of thickness of steel faceplate, shear span ratio, concrete core strength, and spacing of J-hooks on structural behaviours of SCSSBJN are discussed and analysed. These test results show that the failure mode of SCSSBJN was sensitive to the thickness of steel faceplate, shear span ratio, and concrete core strength. Theoretical models are developed to estimate the cracking, yielding, and ultimate bending resistance of SCSSBJN as well as its transverse cross-sectional shear resistance. The validations of predictions by these theoretical models proved that they are capable of estimating strengths of novel SCSSBJNs.

Full-scale Shaking Table Test of Uninterruptible Power Supply Installed in 2-stories Steel Structure (2층 철골 구조물에 설치된 무정전전원장치의 실규모 진동대 실험연구)

  • Lee, Ji-Eon;Park, Won-Il;Choi, Kyoung-Kyu;Oh, Sang-Hoon;Park, Hoon-Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.29-38
    • /
    • 2022
  • In this study, the shaking table tests were carried out on six types of non-structural elements installed on a full-scale two-story steel structure. The shaking table tests were performed for non-structural elements with and without seismic isolators. In this study, the seismic performance of Uninterruptible Power Supply (UPS) specimens was tested and investigated. Non-seismic details were composed of conventional channel section steel beams, and the seismic isolators were composed of high damping rubber bearing (HDRB) and wire isolator. The input acceleration time histories were artificially generated to satisfy the requirements proposed by the ICC-ES AC156 code. Based on the test results, the damage and dynamic characteristics of the UPS with the seismic isolator were investigated in terms of the natural frequency, damping ratio, acceleration time history responses, dynamic amplification factors, and relative displacements. The results from the shaking table showed that the dynamic characteristics of the UPS including the acceleration response were significantly improved when using the seismic isolator.

Flexural Tensile Strength of CJP Groove Welded Joints Connecting Thick HSA800 Plates (HSA800 후판재의 완전용입 맞댐용접부 휨-인장강도 실험)

  • Lee, Cheol Ho;Kim, Dae Kyung;Han, Kyu Hong;Park, Chang Hee;Kim, Jin Ho;Lee, Seung Eun;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.407-418
    • /
    • 2014
  • As a continuing work of previously conducted standard tension tests, full-scale flexural tests were conducted in this study to assess the structural performance the CJP groove welded joints connecting thick HSA800 plates. Two welding electrodes were available at the time of this experimental research; one was GMAW-based electrode A and the other FCAW-based electrode B. Three full-scale box-type beam specimens with single bevel- and V-groove CJP welded joints were fabricated from 60mm and 25mm thick HSA800 plates according to the AWS-prequalified groove welded joint details. In designing the specimens, all possible limit states like local and lateral torsional buckling were carefully controlled in order to induce flexural plastic yielding or eventual joint fracture. All the CJP joints made by both welding electrodes showed satisfactory performance and were able to transfer the tensile flange forces higher than that corresponding to the measured tensile strength of HSA800 flange plates. However, it should be noted that, during fabrication, serious concerns about the welding efficiency and workability of the GMAW-based electrode were raised by a certified welder. The fracture occurred at the unbeveled (or vertical) interface between the weldment and the base metal when the GMAW-based electrode was used in the single-bevel joint, implying the possibility of insufficient melting. Thus, the FCAW-based electrode B is again recommended as the choice of welding electrode for HSA800 plates. The limited test data of this study implies that the V-groove CJP joint should be used in favor of the single bevel CJP joint, if possible.

Investigation of rotation and shear behaviours of complex steel spherical hinged bearings subject to axial tensile load

  • Shi, Kairong;Pan, Wenzhi;Jiang, Zhengrong;Lv, Junfeng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.123-132
    • /
    • 2020
  • Steel spherical hinged bearings have high loading capacity, reliable load transfer, flexible rotation with universal hinge and allowance of large displacement and rotation angle. However, bearings are in complex forced states subject to various load combinations, which lead to the significant influence on integral structural safety. Taking the large-tonnage complex steel spherical hinged bearings of Terminal 2 of Guangzhou Baiyun International Airport as an example, full-scale rotation and shear behaviour tests of the bearings subject to axial tensile load are carried out, and the corresponding finite element simulation analyses are conducted. The results of experiments and finite element simulations are in good agreement with the coincident development tendency of stress and deformation. In addition, the measured rotational moment is less than the calculated moment prescriptive by the code, and the relationship between horizontal displacement and horizontal shear force is linear. Finally, based on these results, the rotation and shear stiffness models of bearings subject to axial tensile load are proposed for the refinement analysis of integral structure.

Interface friction in the service load assessment of slab-on-girder bridge beams

  • Seracino, R.;Kerby-Eaton, S.E.;Oehlers, D.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.259-269
    • /
    • 2005
  • Many slab-on-girder bridges around the world are being assessed because they are approaching the end of their anticipated design lives or codes are permitting higher allowable loads. Current analytical techniques assume that the concrete and steel components act independently, typically requiring full-scale load testing to more accurately predict the remaining strength or endurance of the structure. However, many of the load tests carried out on these types of bridges would be unnecessary if the degree of interaction resulting from friction at the steel-concrete interface could be adequately modeled. Experimental testing confirmed that interface friction has a negligible effect on the flexural capacity of a slab-on-girder beam however, it also showed that interface friction is significant under serviceability loading. This has led to the development of an improved analytical technique which is presented in this paper and referred to as the slab-on-girder mixed analysis service load assessment approach.

Vortex excitation model. Part II. application to real structures and validation

  • Lipecki, T.;Flaga, A.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.477-490
    • /
    • 2013
  • This paper presents results of calculations performed according to our own semi-empirical mathematical model of critical vortex excitation. All calculations are carried out using own computer program, which allows the simulation of both the across-wind action caused by vortices and the lateral response of analysed structures. Vortex excitation simulations were performed in real time taking into account wind-structure interaction. Several structures of circular cross-sections were modelled using a FEM program and calculated under the action of critical vortex excitation. Six steel chimneys, six concrete chimneys and two concrete towers were considered. The method of selection and estimation of the experimental parameters describing the model are also presented. Finally, the results concerning maximum lateral top displacements of the structures are compared with available full-scale data for steel and concrete chimneys.

Seismic retrofit of a steel-reinforced concrete hospital building using continuous energy-dissipative steel columns

  • Massimiliano Ferraioli;Biagio Laurenza;Angelo Lavino;Ciro Frattolillo;Gianfranco De Matteis
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.467-488
    • /
    • 2023
  • Seismic retrofit of an existing steel-reinforced concrete hospital building that features innovative use of a continuous energy-dissipative steel column (CEDC) system is presented in this paper. The special system has been adopted to provide an efficient solution taking into account the difficulties of applying traditional intervention techniques to minimize the impact on architectural functionality and avoid the loss of building function and evacuation during the retrofit implementation. The lateral stiffness and strength of the CEDC system were defined based on the geometric and mechanical properties of the steel strip dampers. The hysteretic behavior under cyclic loadings was defined using a simplified numerical model. Its effectiveness was validated by comparing the results of full-scale experimental data available from the literature. All the main design considerations of the retrofitting plan are described in detail. The effectiveness of the proposed retrofitting system was demonstrated by nonlinear time-history analyses under different sets of earthquake-strong ground motions. The analysis results show that the CEDC system is effective in controlling the deformation pattern and significantly reducing damage to the existing structure during major earthquakes.

Study on Elasto-Plastic Behavior of Column to Beam Connection with 600MPa High Performance Steel(SM 570 TMC) (기둥-보 용접접합부의 보단부 스캘럽형상과 탄소성 거동에 관한 실험적 연구 - 600MPa(SM570TMC)의 경우 -)

  • Kim, Jong Rak;Kim, Seung Bae;Kwon, June Yeop
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.691-700
    • /
    • 2008
  • Contemporary architectural structures have diverse and complex forms. Such structural variety demands requisite performance from the connections in the steel structure so that the latter could resist a horizontal force, such as an earthquake. The connections are the all-important components that create the discontinuous form and that support stress concentration, determining the stiffness and toughness of the entire steel frame. In this study, a real-scale column-to-beam connection was constructed in the 600MPa-grade high-strength and high-performance steel, to test its behavior. Its material and welding characteristics were examined in this study, and its structural performance was analyzed by conducting seismic-resistance tests on the full-scale, cross-shaped column-to-beam welded connections with non-scallop, ordinary-scallop, and reinforced-scallop details. The weld ability of the high-strength, high-performance steel was also evaluated, and data regarding the seismic design for practical application were provided.

A simplified approach for fire-resistance design of steel-concrete composite beams

  • Li, Guo-Qiang;Wang, Wei-Yong
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.295-312
    • /
    • 2013
  • In this paper, a simplified approach based on critical temperature for fire resistance design of steel-concrete composite beams is proposed. The method for determining the critical temperature and fire protection of the composite beams is developed on the basis of load-bearing limit state method employed in current Chinese Technical Code for Fire safety of Steel Structure in Buildings. Parameters affecting the critical temperature of the composite beams are analysed. The results show that at a definite load level, section shape of steel beams, material properties, effective width of concrete slab and concrete property model have little influence on the critical temperature of composite beams. However, the fire duration and depth of concrete slab have significant influence on the critical temperature. The critical temperatures for commonly used composite beams, at various depth of concrete and fire duration, are given to provide a reference for engineers. The validity of the practical approach for predicting the critical temperature of the composite beams is conducted by comparing the prediction of a composite beam with the results from some fire design codes and full scale fire resistance tests on the composite beam.