• Title/Summary/Keyword: full-scale measurements

Search Result 147, Processing Time 0.037 seconds

LIMITATIONS OF SPHERE ANEMOMETRY FOR LOW GAS VELOCITY MEASUREMENTS

  • Han, J.Y.;O.F. Turan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.297-304
    • /
    • 1997
  • Sphere anemometry technique is re-visited for low gas velocity measurements during full-scale fire tests. This technique has the advantage of requiring only one channel per sphere for data acquisition, in addition to being cheap and rugged, The results indicate that the technique is useful for small fuel load burns with low radiation levels. For large fuel loads, the usefulness is up to sprinkler activation temperatures.

  • PDF

A Study on the Simulation of the Ship in Level Ice (평탄방에서 선박의 모의실험에 관한 연구)

  • 박명규;고상용
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.23-31
    • /
    • 1994
  • A theoretical scaling was made in order to acquire the ice resistance of ships in level ice. Ice resistance of ice-breaker Ermak was calculated by Kashteljan eequation and it's model test results were compared with full-scale measurements. Atkins's ice number and Norman Jones's dimensionless numbers were investigated and discussed.

  • PDF

Assessment of Daylight Environment on Light Pipe System Under Different Solar Position (태양의 위치에 따른 광파이프 시스템의 실내 주광환경평가)

  • Shin, Hwa-Young;Kim, Jeong-Tai
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.78-86
    • /
    • 2008
  • The aim of this paper is to show the daylight environment of a light pipe system according to sun movement. A light pipe system has been mounted on the roof of the windowless full scale model: the solar spot has diameter of 0.65m and is 1.3m long, giving an aspect ratio of 1:2. The full scale model was installed on the rooftop of the SHINAN apartment in Yongin city that has no obstructions against sunlight. The test room is equipped with sensors for the measurements of the internal illuminance and has an area of 6m(W)$\times$6m(D)$\times$4m(H). The system has been monitored with a data-logger to evaluate the cumulative distribution of illuminance on a floor-plane from 16th, April to 29th, May, 2008 over one month and selected clear sky condition. For the daylight performance of floor area, the totally 49 measuring points has been used to determine the internal illuminance and an HP datalogger(HP34970A) records the measurements for one consecutive month. The horizontal external illuminance has been measured with two outdoor sensors. This paper presents the results of monitoring light pipe system with internal/external illuminance ratio and cumulative frequency distribution of floor-plane illuminance are discussed The results show that lightpipe is proficient device for introducing daylight into the building. However It provided different daylight indoor environment with wide or narrow Interquatile range of illuminance, internal/external illuminance ratio and cumulative frequency distribution according to solar positions under suuny sky condition. For more achieving the improvement of lightpipes also include energy savings, user visual comfort with various indicators; seasonal solar height, room and lightpipes geometries.

Estimation of the Fundamental Period for Residential Buildings with Shear-Wall System

  • Chun, Young-Soo;Chang, Kug-Kwan;Lee, Li-Hyung
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.121-130
    • /
    • 2000
  • This study focused on evaluating the reliability of code formulas such as those of the current Korean Building Code(KBC 1988). UBC 1997, NBCC 1995. and BSLJ 1994 for estimating the fundamental period of RC apartment buildings with shear-wall dominant systems, representative of typical residential buildings in Korea. For this purpose, full-scale measurements were carried out on fifty RC apartment buildings, and these results were compared to those obtained by code formulas and also by dynamic analysis. Although these code formulas are based on the measured periods of buildings during various earthquakes and building period varies with the amplitude of structural deflection or strain level, ambient surveys should provide an effective tool for experimentally verifying the design period to the completed building. This comparison shows that comparatively large errors are likely to occure when the code formula of KBC 1988 is used, and all the other code formulas are not sufficient to estimate the fundamental period of apartment buildings with shear-wall dominant systems. An improved formula is proposed by regression analysis on the basis of the measured period data. The proposal is for the servicebility stress level, but it can also be applied for seismic code in the regions of low seismicity similar to Korea.

  • PDF

Field measurement-based wind-induced response analysis of multi-tower building with tuned mass damper

  • Chen, Xin;Zhang, Zhiqiang;Li, Aiqun;Hu, Liang;Liu, Xianming;Fan, Zhong;Sun, Peng
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.143-159
    • /
    • 2021
  • The 246.8-m-tall Beijing Olympic Tower (BOT) is a new landmark in Beijing City, China. Its unique architectural style with five sub-towers and a large tower crown gives rise to complex dynamic characteristics. Thus, it is wind-sensitive, and a double-stage pendulum tuned mass damper (DPTMD) has been installed for vibration mitigation. In this study, a finite-element analysis of the wind-induced responses of the tower based on full-scale measurement results was performed. First, the structure of the BOT and the full-scale measurement are introduced. According to the measured dynamic characteristics of the BOT, such as the natural frequencies, modal shapes, and damping ratios, an accurate finite-element model (FEM) was established and updated. On the basis of wind measurements, as well as wind-tunnel test results, the wind load on the model was calculated. Then, the wind-induced responses of the BOT with the DPTMD were obtained and compared with the measured responses to assess the numerical wind-induced response analysis method. Finally, the wind-induced serviceability of the BOT was evaluated according to the field measurement results for the wind-induced response and was found to be satisfactory for human comfort.

A neural network shelter model for small wind turbine siting near single obstacles

  • Brunskill, Andrew William;Lubitz, William David
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.43-64
    • /
    • 2012
  • Many potential small wind turbine locations are near obstacles such as buildings and shelterbelts, which can have a significant, detrimental effect on the local wind climate. A neural network-based model has been developed which predicts mean wind speed and turbulence intensity at points in an obstacle's region of influence, relative to unsheltered conditions. The neural network was trained using measurements collected in the wakes of 18 scale building models exposed to a simulated rural atmospheric boundary layer in a wind tunnel. The model obstacles covered a range of heights, widths, depths, and roof pitches typical of rural buildings. A field experiment was conducted using three unique full scale obstacles to validate model predictions and wind tunnel measurements. The accuracy of the neural network model varies with the quantity predicted and position in the obstacle wake. In general, predictions of mean velocity deficit in the far wake region are most accurate. The overall estimated mean uncertainties associated with model predictions of normalized mean wind speed and turbulence intensity are 4.9% and 12.8%, respectively.

Development of a Dynamically Scaled Model of the Catenary for High Speed Railway (고속전철 가선계의 축소모델 개발에 관한 연구)

  • Kim, Jung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.409-413
    • /
    • 2007
  • A dynamically scaled model of the catenary with a nominal scaling factor of 18.5:1 is designed and constructed. The motivation for developing such a model is the great difficulty of making accurate measurements on the full-scale catenary and the difficulty of making experimental modifications to it. The scaled model is designed to be dynamically equivalent to the full scale catenary with respect to the mass and elastic strength. The scaled model is partially verified by comparing linear vibration and wave characteristics with those predicted by the simulation study.

Evaluation of buffeting response predictions of a cable-stayed bridge from full-scale measurements during a typhoon (실교량 계측을 통한 태풍 영양하의 사장교 버페팅 응답 평가)

  • Park, Jin;Kim, Ho-Kyung;Cho, Soo-Jin;Kim, Gi-Nam;Park, Jun-Yong;Seo, Ju-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.82-83
    • /
    • 2011
  • 본 논문에서는 3경간 연속 사장교에 설치 된 계측장비에서 2010년 태풍 곤파스 당시 계측한 바람 및 교량응답 자료를 바탕으로 사장교의 버페팅 응답을 평가하였다. 계측 된 바람자료에서 스펙트럼 분석을 수행하고 그 결과를 버페팅 해석에 반영하여 실교량 거동을 예측하였다. 예측 된 교량의 거동은 실제 계측 된 값과 유산한 결과를 나타내었다.

  • PDF

A 6 m cube in an atmospheric boundary layer flow -Part 2. Computational solutions

  • Richards, P.J.;Quinn, A.D.;Parker, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.177-192
    • /
    • 2002
  • Computation solutions for the flow around a cube, which were generated as part of the Computational Wind Engineering 2000 Conference Competition, are compared with full-scale measurements. The three solutions shown all use the RANS approach to predict mean flow fields. The major differences appear to be related to the use of the standard $k-{\varepsilon}$, the MMK $k-{\varepsilon}$ and the RNG $k-{\varepsilon}$ turbulence models. The inlet conditions chosen by the three modellers illustrate one of the dilemmas faced in computational wind engineering. While all modeller matched the inlet velocity profile to the full-scale profile, only one of the modellers chose to match the full-scale turbulence data. This approach led to a boundary layer that was not in equilibrium. The approach taken by the other modeller was to specify lower inlet turbulent kinetic energy level, which are more consistent with the turbulence models chosen and lead to a homogeneous boundary layer. For the $0^{\circ}$ case, wind normal to one face of the cube, it is shown that the RNG solution is closest to the full-scale data. This result appears to be associated with the RNG solution showing the correct flow separation and reattachment on the roof. The other solutions show either excessive separation (MMK) or no separation at all (K-E). For the $45^{\circ}$ case the three solutions are fairly similar. None of them correctly predicting the high suctions along the windward edges of the roof. In general the velocity components are more accurately predicted than the pressures. However in all cases the turbulence levels are poorly matched, with all of the solutions failing to match the high turbulence levels measured around the edges of separated flows. Although all of the computational solutions have deficiencies, the variability of results is shown to be similar to that which has been obtained with a similar comparative wind tunnel study. This suggests that the computational solutions are only slightly less reliable than the wind tunnel.

Field measurements of wind pressure on an open roof during Typhoons HaiKui and SuLi

  • Feng, Ruoqiang;Liu, Fengcheng;Cai, Qi;Yan, Guirong;Leng, Jiabing
    • Wind and Structures
    • /
    • v.26 no.1
    • /
    • pp.11-24
    • /
    • 2018
  • Full-scale measurements of wind action on the open roof structure of the WuXi grand theater, which is composed of eight large-span free-form leaf-shaped space trusses with the largest span of 76.79 m, were conducted during the passage of Typhoons HaiKui and SuLi. The wind pressure field data were continuously and simultaneously monitored using a wind pressure monitoring system installed on the roof structure during the typhoons. A detailed analysis of the field data was performed to investigate the characteristics of the fluctuating wind pressure on the open roof, such as the wind pressure spectrum, spatial correlation coefficients, peak wind pressures and non-Gaussian wind pressure characteristics, under typhoon conditions. Three classical methods were used to calculate the peak factors of the wind pressure on the open roof, and the suggested design method and peak factors were given. The non-Gaussianity of the wind pressure was discussed in terms of the third and fourth statistical moments of the measured wind pressure, and the corresponding indication of the non-Gaussianity on the open roof was proposed. The result shows that there were large pulses in the time-histories of the measured wind pressure on Roof A2 in the field. The spatial correlation of the wind pressures on roof A2 between the upper surface and lower surface is very weak. When the skewness is larger than 0.3 and the kurtosis is larger than 3.7, the wind pressure time series on roof A2 can be taken as a non-Gaussian distribution, and the other series can be taken as a Gaussian distribution.