• Title/Summary/Keyword: full-scale five-story building

Search Result 8, Processing Time 0.057 seconds

System Identification of a Full Scale Five-story building for Vibration Controller design (진동제어기 설계를 위한 실물크기 5층 건물의 시스템 식별)

  • Min, Kyung-Won;Lee, Young-Cheol;Lee, Sang-Hyun;Park, Min-Kyu;Kim, Doo-Hoon;Park, Jin-Il;Jeong, Jeoung-Kyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.676-681
    • /
    • 2002
  • System Identification is carried out for a full scale five-story builing to design a vibration controller. Dynamic characteristics such as natural frequencies, damping ratios, and modes are obtained from the input/output information by both sine-sweep method and white noise method. The active mass driver installed on the five floor is applied as external loading to move the building and each floor acceleration is measured and processed for the system identification. The identified building will be experimentally investigated again with viscoelastic dampers installed at inter-stories to obtain the response behavior. Corresponding result will be presented soon.

  • PDF

Dynamic Experiment of a Full-Scale Five-story Steel Building with Viscoelastic Dampers (점탄성 감쇠기가 설치된 실물크기 5층 철골건물의 진동실험)

  • 민경원;이영철;이상현;박민규;김두훈;박진일;정정교
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.239-246
    • /
    • 2002
  • Viscoelastic dampers are known effective devices for response reduction under earthquakes and winds. This study addresses how to design the optimum viscoelastic dampers installed at the full scale five-story steel building and novel approach to carry out the experimental work to verify the damper performance. First, an exciter of hybrid mass-type actuator is designed, which can move the building and its mathematical model is derived. The integrated system of building-actuator is experimentally analyzed for mathematical model. Second, convex model is applied for the prediction of required additional damping ratios to reduce responses below a specified target level. Chevron-type viscoelastic dampers are manufactured and installed at the first and second inter-stories, which are optimum places for response reduction. Sine-sweep and white noise excitations, which are generated by the hybrid mass-type actuator, are applied to the full scale building without and with dampers for performance verification. The transfer function of the building with four dampers, two of them installed at each first and second inter-story, are found to be lower than that of the building with two dampers installed at the first inter-story

  • PDF

System Identification of a Full Scale Five-story building for Vibration Controller Design (진동제어기 설계를 위한 실물크기 5층 건물의 시스템 식별)

  • Min, Kyung-Won;Lee, Young-Cheol;Lee, Sang-Hyun;Park, Jin-Il;Kim, Doo-Hoon;Park, Min-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.368.1-368
    • /
    • 2002
  • System Identification is carried out for a full scale five-story holing to design a vibration controller design. Dynamic characteristics such as natural frequencies, damping ratios, and modes are obtained from the input/output informal ion by both sine-sweet method and white noise method. The active mass driver installed on the third floor is applied as external loading to move the building and each floor acceleration is measured and processed for the system identification. (omitted)

  • PDF

Excitation and System Identification of a Full-Scale Five-Story Structure for the Application of Viscoelastic Dampers (점탄성 감쇠기 적용을 위한 실물크기 5층 건물의 가진 및 시스템 식별)

  • 민경원;이상현;김진구;이영철;이승준;최현훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • Excitation and system identification are carried out for a full-scale five-story structure to obtain fundamental data which will be used for the design of viscoelastic dampers, The hybrid mass driver(HMD) installed on the fifth floor was employed as external exciter to provide excitation for the building, Each floor response was measured and processed to find out where and how the viscoelastic dampers are located and designed. The sine-sweep and white noise loadings were applied to the structure by the HMD to obtain dynamic characteristics such as natural frequencies, damping ratios, and modes, The identified building was experimentally investigated again with the designed viscoelastic dampers installed at inter-stories to obtain the response behavior in the companion paper.

Design and Construction of a 1:5 Scale 10-Story R.C. Apartment Building Model for Earthquake Simulation Tests (지진모의실험을 위한 10층 R.C. 공동주택의 1:5 축소모델 설계 및 시공)

  • Hwang, Seong-Jun;Lee, Kyung-Bo;Kang, Chang-Bum;Lee, Han-Seon;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.55-66
    • /
    • 2011
  • The purpose of this study was to develop an efficient process in the design and construction of a 1:5 scale 10-story R.C. apartment building model for an earthquake simulation test. The reduction ratio of the specimen was determined by the size ($5m{\times}5m$) and pay load (600kN) of the available shaking table and the availability of model reinforcements. For efficiency and quality control of the reinforcement work, prefabrication was used. Construction was conducted in two steps, the wall in one step, and another step for the slab, because it was impossible to remove the formwork of a wall if the walls and slabs in a story were constructed in one step. The slip form construction method was used repetitively for walls. The formwork of a wall was made with veneer and acryl plate on each side, so it was possible to check the quality of the concrete placing. To construct this model, it took roughly six months with five full-time research assistants, for a total of 602 man days of labor in construction.

Flexural Capacity of the Profiled Steel Composite Beams with Truss Deck Plate (트러스 데크를 사용한 강판성형 합성보의 휨성능 평가)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong;Jung, Sang Min;Kang, Suk Kuy
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2007
  • Slimfloor composite-beam systems could considerably reduce the story height of a building if the steel beam would be installed deep into the concrete floor slab. However, as the depth of the steel beam's installation is limited, it cannot cope with the various demands of building systems. To address this problem, a profiled steel beam section that can control the depth of the steel beam's and slabs' installation was developed in this study. Presented herein are the results of an experiment that was conducted focusing on the flexural behavior of the partially connected composite beams with profiled steel beams encased in composite concrete slabs. Five full-scale specimens with different slab types, with or without shear connection and reinforcement bars, were constructed and tested in this study. As a result, the shear bond stress without an additional shear connection was found to be $0.20{\sim}0.76N/mm^2$due to the inherent mechanical and chemical bond stress.

Evaluation of Flexural Behavior of Prestressed Composite Beams with Corrugated Webs (파형웨브 프리스트레스트 합성보의 휨거동 평가)

  • Oh, Jae-Yuel;Lee, Deuck-Hang;Kim, Kang-Su;Kang, Hyun;Lee, Sofia;Bang, Yong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.39-40
    • /
    • 2010
  • The demands for longer span and reduction of story height have greatly increased as building structures become much larger and higher in recent years. Although the development of flexural members for reducing story height or making long span has been studied by many researchers and engineers, there is still a lack of efficient systems that meet these two demands simultaneously. This study aimed at developing a new composite beam system suitable for long span and reduction of story height, and proposed a prestressed composite beam with corrugated web. It has great resistance against non-symmetric construction load due to its strong out-of-plane shear strength with relatively small member height as well as good constructability and economic efficiency by removing/minimizing form work. The corrugated webs also make accordion effect introducing larger effective prestressing force to top and bottom flanges, which causes larger upward camber reducing the member deflection. Five full-scale specimens with key test parameters, which are web sectional shapes and number of drape points, were tested to understand their flexural behavior and to verify the performance of the proposed method. The experimental test results showed that the proposed prestressed composite beam had greater flexural strength and stiffness than the ordinary non-prestressed composite beam.

  • PDF

Shear Behavior of Precast Prestressed Inverted-Tee Concrete Beams with Dapped Ends (프리캐스트 프리스트레스트 콘크리트 역티형보의 댑단부 전단거동)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • Two full scale precast pretensioned dapped ended rectangular beams designed by PCI design handbook for a major domestic live load of market and parking building - 500kgf/㎡ and 1,200kgf/㎡ were investigated experimentally. The bottom length of beams was 60cm which was same to the length of rectangular column in the base of five-story market or parking buildings. The height of dap was web hight plus half of the flange height within the allowable limit of PCI method. Shear tests were performed on four beam ends. Followings were obtained from the experimental study. All of the specimens were fully complied with the PCI design handbook. Two of four specimens which were designed for live load of 1,200kgf/㎡ showed crackings at the re-entrant corner of dap before the full service loadings, and failed by direct shear at the load level much less than their calculated nominal strength. The specimens designed for live load of 1,200kgf/㎡ failed at 772 tonf and 78.36tonf by direct shear crackings. This strength was less than PCI limit of 81.9 tonf and higher than ACI limit of 65.62tonf. Thus, the limit suggested by ACI seems more reasonable in regard of safety in view of this test results. According to load-strain curves, the strain of hanger reinforcement reached almost yield strain. It is recommended to use more inclined hanger reinforcement of improve the strength and serviceability.