• Title/Summary/Keyword: full-factorial design

Search Result 147, Processing Time 0.032 seconds

Low-Cost Cultivation and Sporulation of Alkaliphilic Bacillus sp. Strain AK13 for Self-Healing Concrete

  • Hong, Minyoung;Kim, Wonjae;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1982-1992
    • /
    • 2019
  • The alkaliphilic, calcium carbonate precipitating Bacillus sp. strain AK13 can be utilized in concrete for self-repairing. A statistical experimental design was used to develop an economical medium for its mass cultivation and sporulation. Two types of screening experiment were first conducted to identify substrates that promote the growth of the AK13 strain: the first followed a one-factor-at-a-time factorial design and the second a two-level full factorial design. Based on these screening experiments, barley malt powder and mixed grain powder were identified as the substrates that most effectively promoted the growth of the AK13 strain from a range of 21 agricultural products and by-products. A quadratic statistical model was then constructed using a central composite design and the concentration of the two substrates was optimized. The estimated growth and sporulation of Bacillus sp. strain AK13 in the proposed medium were 3.08 ± 0.38 × 108 and 1.25 ± 0.12 × 108 CFU/ml, respectively, which meant that the proposed low-cost medium was approximately 45 times more effective than the commercial medium in terms of the number of cultivatable bacteria per unit price. The spores were then powdered via a spray-drying process to produce a spore powder with a spore count of 2.0 ± 0.7 × 109 CFU/g. The AK13 spore powder was mixed with cement paste, yeast extract, calcium lactate, and water. The yeast extract and calcium lactate generated the highest CFU/ml for AK13 at a 0.4:0.4 ratio compared to 0.4:0.25 (the original ratio of the B4 medium) and 0.4:0.8. Twenty-eight days after the spores were mixed into the mortar, the number of vegetative cells and spores of the AK13 strain had reached 106 CFU/g within the mortar. Cracks in the mortar under 0.29 mm were healed in 14 days. Calcium carbonate precipitation was observed on the crack surface. The mortar containing the spore powder was thus concluded to be effective in terms of healing micro-cracks.

DFSS-Based Design of a Hall-Effect Rotary Position Sensor (DFSS 를 이용한 홀 효과 기반 회전형 위치 센서의 설계)

  • Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.231-236
    • /
    • 2012
  • This work presents the application of the DFSS (Design for Six Sigma) methodology to optimizing both the linearity and the sensitivity of the output voltage of a Hall-effect rotary position sensor. To this end, the dimensions and relative positions of a permanent magnet with reference to a Hall sensor are selected as the design factors for a full factorial design. In order to evaluate the output voltage of the rotary position sensor at each run in the experimental design, analytical solutions to the magnetic flux density were obtained using the Biot-Savart law and the relations between the magnetic flux density and the output voltage intrinsic to a Hall sensor. Through measurements of the improved output voltage of the rotary position sensors manufactured using the optimized design factors, the proposed method is shown to be simple and practical.

Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology (반응표면분석법을 이용한 전도성물질의 절연코팅 프로세스의 최적화)

  • Sim, Chol-Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data ($Adj-R^2=0.944$). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was $530k{\Omega}{\cdot}cm$.

A Study on User Interface Design According to 3D Menu Type and Control Type for 3D Displays

  • Kim, Jae-Ho;Jung, Sung-Wook;Choe, Jae-Ho;Jung, Eui-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.551-562
    • /
    • 2011
  • Objective: We proposed an effective 3D menu manipulation alternative with a usability test. This was performed in a 3D environment with 3D menu and control manipulation methods. Background: As 3D stereoscopic displays became generalized, various 3D applications were being used not just movies, games, but also mobile contents and advertisements. However, when a user interface was designed in a 3D environment, it was lacked that a clear standard and result of an efficiency and usability as like a 2D environment. Method: We implemented 9 kinds of 3D menu types based on 3D menu hierarchies, menu layouts and dimensions. And we extracted 3 representative control types in a 3D environment. We performed usability evaluation with full factorial design for 27 menu alternatives with 2 types of menu manipulation tasks. In this condition, we measured the performance time, subjective discomfort and eye-fatigue. Results: A control type had the significant effect, and the effect of menu types had the different result depending on given tasks. Conclusion: This experiment showed the interaction of menu and control types depended on 3D menu manipulation tasks were significant in a 3D user interface design. Therefore, as a purpose of a 3D menu manipulation task, 3D menu types and control types were should be considered. Application: We supposed this result was should be applied in a 3D menu contents design.

A Study on the Efficacy and Equivalence of D-antigen Quantitative Analysis through QbD6sigma Process (QbD6시그마 프로세스를 통한 D-항원 정량 시험법의 유효성과 동등성에 관한 연구)

  • Kim, Kang Hee;Hyun-jung, Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.831-842
    • /
    • 2022
  • Purpose: This study carried out the Quality by Design (QbD)6σ process to verify the effectiveness and equivalence of the finished D-antigen quantitative test method, and compared the OFAT-based method validation and test result acceptance criteria with the Analytical Quality by Design (AQbD)-based method validation and test method. This is a study on how to reduce the risk of delay in permit change by increasing the reliability of permit data in the existing method by statistically analyzing the results. Methods: With the QbD6σ process, the effectiveness and equivalence of the D-antigen quantitative test method were verified with the data of the existing test method and the new test method. Results: Method validation tests are performed based on AQbD. Critical Method Parameters are identified through risk assessment, and single/combined actions are verified by designing and performing tests for Critical Method Parameters (analysis of variance, full factorial design method). Method validation can be effectively accomplished with the QbD6σ process. Conclusion: The use of QbD6σ can be used to achieve satisfactory results for both pharmaceutical companies and regulators by using appropriate statistical analytical methods for method validation as required by regulatory agencies.

NUMBER OF CYCLES IN EVOLUTIONARY OPERATION

  • Lim, Yong-B.;Park, Sung-H.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.201-208
    • /
    • 2007
  • Evolutionary operation (EVOP) proposed by Box (1957) is a method for continuous monitoring and improvement of a full-scale manufacturing process with the objective of moving the operating conditions toward the better ones. EVOP consists of systematically making small changes in the levels of the two or three process variables under consideration. Data are collected on the response variable at each point of two level factorial design with the center point and a cycle is said to have been completed. The cycles are replicated sequentially until the decision is made on whether further cycle of experiments is needed to conclude the significance of any of main effects or interaction effects or the curvature. In this paper, an improved flow chart of EVOP is proposed and how to determine the number of cycles is studied based on the size of type II error. In order to reject the alternative hypothesis of interests with more confidence and conclude that we believe in the null hypothesis of no effects, we propose a counter measure $p^*-value$ corresponding to the p-value. The relationship of $p^*-value$ to the probability of type II error ${\beta}$ under the alternative hypothesis of interests is analogous to that of p-value to the probability of type I error ${\alpha}$. Also the implementation of EVOP with a mixture experiment is discussed.

Binary Mixture Toxicity of AROCLOR 1248, Oleic Acid, and Elemental Sulfur to Vibrio fischeri Luminescence

  • Kalciene, Virginija;Dabkeviciene, Daiva;Cetkauskaite, Anolda
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1541-1546
    • /
    • 2015
  • The objective of this research was to evaluate the toxicity of the industial xenobiotic Aroclor 1248 (A) and natural origin substances~elemental sulfur (S80) and oleic acid (OA) and their binary mixtures to V. fischeri bioluminescence during the prolonged exposure time (up to 60 min). The bioluminescence quenching test was used to determine the toxic effects. Full factorial experiment design and multiple regression analysis and the comparison of binary mixture effect with the sum of effects of individual chemicals were used for the evaluation of combined effects of toxicants. The analysis of general trend of mixture toxicity to bioluminescence showed that mixture toxic effects were reversible up to 60 min. Data analysis revealed different joint effects, which were depended on mixture composition. S80 enhanced toxic effect of A and acted additively with synergistic interaction. Hydrophobic OA in mixture with A acted antagonistically and in mixture with sulfur caused an additive effect with antagonistic component of interaction. It was concluded that low concentrations of natural toxic substances present in environmental samples as mixtures of chemicals can define the toxicodynamic character of industrial xenobiotics.

Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors

  • Bhattacharjee, Meenakshi;Siemann, Evan
    • ALGAE
    • /
    • v.30 no.1
    • /
    • pp.67-79
    • /
    • 2015
  • Planktivorous fish which limit zooplankton grazing have been predicted to increase algal biodiesel production in wastewater fed open reactors. In addition, tanks with higher algal diversity have been predicted to be more stable, more productive, and to more fully remove nutrients from wastewater. To test these predictions, we conducted a 14-week experiment in Houston, TX using twelve 2,270-L open tanks continuously supplied with wastewater. Tanks received algal composition (monocultures or diverse assemblage) and trophic (fish or no fish) treatments in a full-factorial design. Monocultures produced more algal and fatty acid methyl ester (FAME) mass than diverse tanks. More than 80% of lipids were converted to FAME indicating potentially high production for conversion to biodiesel (up to $0.9T\;ha^{-1}y^{-1}$). Prolific algal growth lowered temperature and levels of total dissolved solids in the tanks and increased pH and dissolved oxygen compared to supply water. Algae in the tanks removed 91% of nitrate-N and 53% of phosphorus from wastewater. Monocultures were not invaded by other algal species. Fish did not affect any variables. Our results indicated that algae can be grown in open tank bioreactors using wastewater as a nutrient source. The stable productivity of monocultures suggests that this may be a viable production method to procure algal biomass for biodiesel production.

A Study on the Improvement of Cutting Force and Surface Roughness in MQL Turning (MQL 선삭가공에서 절삭력과 표면거칠기 향상에 관한 연구)

  • Hwang Young-Kug;Chung Won-Jee;Jung Jong-Yun;Lee Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.83-91
    • /
    • 2006
  • At present, industry and researchers are looking for ways to reduce the use of lubricants because of ecological and economical reasons. Therefore, metal cutting is to move toward dry cutting or semi-dry cutting. One of the technologies is known as MQL(Minimum Quantity Lubrication) machining. This research presents an investigation into MQL machining with the objective of deriving the optimum cutting conditions for the turning process of SM4SC. To reach these goals several finish turning experiments were carried out, varying cutting speed, feed rate, oil quantity and so on, with MQL and flood coolant. The surface roughness and cutting force results of tests were measured and the effects of cutting conditions were analyzed by the method of Analysis of Variance(ANOVA). From the experimental results and ANOVA, this research proposed optimal cutting conditions to improve the machinability in MQL turning process.

A Study on $CO_2$ Laser-TIG Hybrid Welding of Zinc-Coated Steel Sheet Part 2 : Relationship between Welding Parameters and Weldability (아연도금 강판의 $CO_2$ 레이저-TIG 하이브리드 용접에 관한 연구 Part 2 : 공정변수와 용접성과의 관계)

  • Kim, Cheol-Hee;Choi, Woong-Yong;Chae, Hyun-Byung;Kim, Jeong-Han;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.27-31
    • /
    • 2006
  • Optimization of process parameters for laser-arc hybrid welding process is intrinsically sophisticated because the process has three kinds of parameters-arc, laser and hybrid welding parameters. In this paper, the relationship between weldability and several process parameters such as laser beam-arc distance, electrode height, welding current and welding speed, were investigated by the full factorial experimental design. Weld quality was evaluated by using weight of spatters which is related with the pore area. It was found that the weld quality was increased with the increases in laser beam-arc distance and welding current, and decreased with the increases in electrode height and welding speed.