• 제목/요약/키워드: full-duplex communication

검색결과 97건 처리시간 0.026초

Performance Analysis of Full-Duplex Relay Networks with Residual Self-Interference and Crosstalk

  • Liu, Guoling;Feng, Wenjiang;Zhang, Bowei;Ying, Tengda;Lu, Luran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.4957-4976
    • /
    • 2016
  • This paper investigates the error performance of the amplify-and-forward (AF) relaying systems in the context of full-duplex (FD) communication. In addition to the inherent self-interference (SI) due to simultaneous transmission and reception, coexistent FD terminals may cause crosstalk. In this paper, we utilize the information exchange via the crosstalk channel to construct a particular distributed space-time code (DSTC). The residual SI is also considered. Closed-form pairwise error probability (PEP) is first derived. Then we obtain the upper bound of PEP in high transmit power region to provide more insights of diversity and coding gain. The proposed DSTC scheme can attain full cooperative diversity if the variance of SI is not a function of the transmit power. The coding gain can be improved by lengthening the frame and proper power control. Feasibility and efficiency of the proposed DSTC are verified in numerical simulations.

협력 인지 통신망에서의 전 이중 통신 (Full-Duplex Communication in Cooperative Cognitive Radio Network)

  • 박상우;송익호;이승원
    • 한국통신학회논문지
    • /
    • 제41권11호
    • /
    • pp.1374-1379
    • /
    • 2016
  • 이제까지의 협력 인지 통신망에서는 쓰는 이들이 거의 대부분 서로 반 이중 방식으로 신호를 주고 받았다. 이 논문에서는 부 쓰는이들이 전 이중 통신 기술을 쓰는 협력 인지 통신망을 제안하고 그 성능을 간단히 살펴본다. 제안한 방식에서는 협력 인지 통신망의 부 쓰는이들이 동시 송수신 안테나를 쓰는 환경을 생각하여, 전 이중으로 통신할 수 있도록 하였다. 제안한 방식에서 이룰 수 있는 전송률을 해석적으로 얻고, 이제까지의 협력 인지 통신망보다 전송률 성능이 더 높다는 것을 수치적인 계산으로 보인다.

Novel Digital Cancelation Method in Presence of Harmonic Self-Interference

  • Ju, Hyungsik;Gwak, Donghyuk;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • 제39권2호
    • /
    • pp.245-254
    • /
    • 2017
  • In-band full-duplex (IFD) communication has recently attracted a great deal of interest because it potentially provides a two-fold spectral efficiency increase over half-duplex communications. In this paper, we propose a novel digital self-interference cancelation (DSIC) algorithm for an IFD communication system in which two nodes exchange orthogonal frequency-division multiplexing (OFDM) symbols. The proposed DSIC algorithm is based on the least-squares estimation of a self-interference (SI) channel with block processing of multiple OFDM symbols, in order to eliminate the fundamental and harmonic components of SI induced through the practical radio frequency devices of an IFD transceiver. In addition, the proposed DSIC algorithm adopts discrete Fourier transform processing of the estimated SI channel to further enhance its cancelation performance. We provide a minimum number of training symbols to estimate the SI channel effectively. The evaluation results show that our proposed DSIC algorithm outperforms a conventional algorithm.

A Medium Access Control Mechanism for Distributed In-band Full-Duplex Wireless Networks

  • Zuo, Haiwei;Sun, Yanjing;Li, Song;Ni, Qiang;Wang, Xiaolin;Zhang, Xiaoguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5338-5359
    • /
    • 2017
  • In-band full-duplex (IBFD) wireless communication supports symmetric dual transmission between two nodes and asymmetric dual transmission among three nodes, which allows improved throughput for distributed IBFD wireless networks. However, inter-node interference (INI) can affect desired packet reception in the downlink of three-node topology. The current Half-duplex (HD) medium access control (MAC) mechanism RTS/CTS is unable to establish an asymmetric dual link and consequently to suppress INI. In this paper, we propose a medium access control mechanism for use in distributed IBFD wireless networks, FD-DMAC (Full-Duplex Distributed MAC). In this approach, communication nodes only require single channel access to establish symmetric or asymmetric dual link, and we fully consider the two transmission modes of asymmetric dual link. Through FD-DMAC medium access, the neighbors of communication nodes can clearly know network transmission status, which will provide other opportunities of asymmetric IBFD dual communication and solve hidden node problem. Additionally, we leverage FD-DMAC to transmit received power information. This approach can assist communication nodes to adjust transmit powers and suppress INI. Finally, we give a theoretical analysis of network performance using a discrete-time Markov model. The numerical results show that FD-DMAC achieves a significant improvement over RTS/CTS in terms of throughput and delay.

The Full-Duplex Device-to-Device Security Communication Under the Coverage of Unmanned Aerial Vehicle

  • Zeng, Qian;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1941-1960
    • /
    • 2019
  • Unmanned aerial vehicles (UAVs), acting as mobile base stations (BSs), can be deployed in the typical fifth-generation mobile communications (5G) scenarios for the purpose of substantially enhancing the radio coverage. Meanwhile, UAV aided underlay device-to-device (D2D) communication mode can be activated for further improving the capacity of the 5G networks. However, this UAV aided D2D communication system is more vulnerable to eavesdropping attacks, resulting in security risks. In this paper, the D2D receivers work in full-duplex (FD) mode, which improves the security of the network by enabling these legitimate users to receive their useful information and transmit jamming signal to the eavesdropper simultaneously (with the same frequency band). The security communication under the UAV coverage is evaluated, showing that the system's (security) capacity can be substantially improved by taking advantage of the flexible radio coverage of UAVs. Furthermore, the closed-form expressions for the coverage probabilities are derived, showing that the cellular users (CUs)' secure coverage probability in downlink transmission is mainly impacted by the following three factors: its communication area, the relative position with UAV, and its eavesdroppers. In addition, it is observed that the D2D users or DUs' secure coverage probability is relevant to state of the UAV. The system's secure capacity can be substantially improved by adaptively changing the UAV's position as well as coverage.

Capacity Enhancement of Uni-directional In-band Full-Duplex Cellular Networks through Co-channel Interference Cancellation

  • Ju, Hyungsik;Gwak, Donghyuk;Kim, Sun-Ae;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • 제40권2호
    • /
    • pp.207-217
    • /
    • 2018
  • As implementation of the in-band full duplex (IFD) transceiver becomes feasible, research interest is growing with respect to using IFD communication with cellular networks. However, the cellular network in which the IFD communication is applied inevitably suffers from an increase of the co-channel interference (CCI) due to IFD simultaneous transmission and reception. In this paper, we analyze the performance of a cellular network based on uni-directional IFD (UD-IFD) communication, wherein an IFD base station simultaneously supports downlink and uplink transmissions of half-duplex (HD) users. In addition, a multi-pair CCI cancellation (MP-CCIC) method combining CCIC and user pairing is proposed to improve the performance of the UD-IFD network. Simulation results showed that, compared to a conventional HD cellular network without using CCIC, capacity gain was not obtained in the UD-IFD cellular network. On the other hand, when applying the proposed MP-CCIC, the capacity of the UD-IFD cellular network greatly improved compared to that of an HD cellular network.

Full-Duplex Operations in Wireless Powered Communication Networks

  • Ju, Hyungsik;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • 제39권6호
    • /
    • pp.794-802
    • /
    • 2017
  • In this paper, a wireless powered communication network (WPCN) consisting of a hybrid access point (H-AP) and multiple user equipment (UE), all of which operate in full-duplex (FD), is described. We first propose a transceiver structure that enables FD operation of each UE to simultaneously receive energy in the downlink (DL) and transmit information in the uplink (UL). We then provide an energy usage model in the proposed UE transceiver that accounts for the energy leakage from the transmit chain to the receive chain. It is shown that the throughput of an FD WPCN using the proposed FD UE (FD-WPCN-FD) can be maximized by optimal allocation of the UL transmission time to the UE by solving a convex optimization problem. Simulation results reveal that the use of the proposed FD UE efficiently improves the throughput of a WPCN with a practical self-interference cancellation capability at the H-AP. Compared to the WPCN with FD H-AP and half-duplex (HD) UE, FD-WPCN-FD achieved an 18% throughput gain. In addition, the throughput of FD-WPCN-FD was shown to be 25% greater than that of WPCN in which an H-AP and UE operated in HD.

고효율 차세대 무선랜 시스템을 위한 전이중 거대 다중입출력 (Full-Duplex Massive MIMO for High Efficiency Next Generation WLAN Systems)

  • 이진녕;최경준;김광순
    • 한국통신학회논문지
    • /
    • 제41권8호
    • /
    • pp.921-923
    • /
    • 2016
  • 본 논문에서는 고밀도 환경을 고려해야 하는 차세대 무선랜에서 고효율의 우수한 전송 품질을 제공하기 위하여 고려할 수 있는 고용량 MIMO와 전이중 통신 기술들에 대해 다룬다. 제안하는 방식은 분리된 공간 자원의 양에 따라 다른 캐리어 센싱 한계값을 할당하는 JSDR 기술과 프로토콜 오버헤드를 줄인 효율적인 다중 사용자 고용량 MIMO 프로토콜, 그리고 전이중 통신을 적용하여 기존의 무선랜 시스템보다 네트워크 용량을 증가 시킬 수 있음을 보였다.

A New In-band Full-duplex SIC Scheme Using a Phase Rotator

  • Lee, Haesoon;Kim, Dongkyu;Kim, Jinmin;Hong, Daesik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권4호
    • /
    • pp.240-245
    • /
    • 2014
  • How well the self-interference cancellation (SIC) technique performs is a primary issue in realizing an in-band full-duplex (FD) wireless communication system. One factor affecting its performance is channel estimation error on the self-interference channel. We propose a new analog SIC scheme which is robust to channel estimation error. It uses phase rotators in the radio frequency (RF) chain. We also derive closed-form equations for the residual self-interference of the proposed and the conventional schemes. The analytical and numerical results show that the residual self-interference under the proposed SIC scheme is less than that using the conventional scheme, even though channel estimation error is present.

전 이중 다중 안테나 셀룰라 네트워크의 간섭 정렬 타당성 (Feasibility of Interference Alignment for Full-Duplex MIMO Cellular Networks)

  • 김기연;양장훈;전상운;김동구
    • 한국통신학회논문지
    • /
    • 제40권12호
    • /
    • pp.2389-2391
    • /
    • 2015
  • 본 논문은 전 이중 다중 안테나 셀룰라 네트워크에서 간섭 정렬 타당성을 다루고 있다. 간섭 정렬을 위한 필요충분조건 정립과, 달성 가능 합 자유도를 대칭 네트워크에 내에서 설명했다. 실험결과 기존 반 이중 통신의 합 자유도 보다 향상 되는 것을 확인 할 수 있다.