• 제목/요약/키워드: full-aeroelastic model

Search Result 23, Processing Time 0.016 seconds

A Study on Aeroelastic Characteristic using Two-dimensional Full Aircraft (전기체 2차원 모델을 이용한 공력탄성학적 특성에 관한 연구)

  • Bong-Do Pyeon;Jae-Sung Bae
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.10-17
    • /
    • 2024
  • Solar-powered unmanned aerial vehicles(SPUAV), which are being actively developed domestically and internationally, generally feature high aspect ratio(AR) wings. These high AR wings necessitate a lightweight design as their weight increases, rendering them susceptible to flutter. Consequently, flutter analysis is critical from the initial design phase. Typically, flutter analysis is conducted using a standard section wing or more precisely through a 3D model. However, due to the extended analysis time required by 3D models, this study opts for a 2D aircraft model. The 2D model computes faster than the 3D model and intuitively secures the flutter boundary. In this study, a structural/aerodynamic force model of the 2D aircraft was established, and the findings were compared with those from a 3D half model. The results showed that the flutter analysis between the 2D model and the 3D half model was similar, within about a 3% margin, thus validating the proposed 2D model's effectiveness.

Aeroelastic Behaviors of Self-anchored Suspension Bridge with Lateral Sag of Main Cable(I) -Focused on the Behavior of Girder- (횡방향 새그를 가진 자정식 현수교의 공탄성 거동(I) -주형의 거동을 중심으로-)

  • Kwon, Soon Duck;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.259-267
    • /
    • 1997
  • Wind tunnel test results and their interpretations focused on the behavior of girder, which were performed to study the aerodynamic stability of a self-anchored suspension bridge with lateral sag of main cable, are presented in this paper The shape of the girder which has the best aerodynamic stability was selected based on the section model test under uniform and turbulent flow conditions. Good performance of the selected section was confirmed in the full bridge model test. Measured flutter derivatives are presented for further study. Buffeting response was investigated to check the fatigue problem and serviceability of the bridge but it was found to be acceptable from the engineering point of view. Even though the drag coefficient of the girder had high value, the amplitude of the lateral vibration was found to be very low. This may be due to the restraint provided by the lateral sag of the cables.

  • PDF

Identification of acrosswind load effects on tall slender structures

  • Jae-Seung Hwang;Dae-Kun Kwon;Jungtae Noh;Ahsan Kareem
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.221-236
    • /
    • 2023
  • The lateral component of turbulence and the vortices shed in the wake of a structure result in introducing dynamic wind load in the acrosswind direction and the resulting level of motion is typically larger than the corresponding alongwind motion for a dynamically sensitive structure. The underlying source mechanisms of the acrosswind load may be classified into motion-induced, buffeting, and Strouhal components. This study proposes a frequency domain framework to decompose the overall load into these components based on output-only measurements from wind tunnel experiments or full-scale measurements. First, the total acrosswind load is identified based on measured acceleration response by solving the inverse problem using the Kalman filter technique. The decomposition of the combined load is then performed by modeling each load component in terms of a Bayesian filtering scheme. More specifically, the decomposition and the estimation of the model parameters are accomplished using the unscented Kalman filter in the frequency domain. An aeroelastic wind tunnel experiment involving a tall circular cylinder was carried out for the validation of the proposed framework. The contribution of each load component to the acrosswind response is assessed by re-analyzing the system with the decomposed components. Through comparison of the measured and the re-analyzed response, it is demonstrated that the proposed framework effectively decomposes the total acrosswind load into components and sheds light on the overall underlying mechanism of the acrosswind load and attendant structural response. The delineation of these load components and their subsequent modeling and control may become increasingly important as tall slender buildings of the prismatic cross-section that are highly sensitive to the acrosswind load effects are increasingly being built in major metropolises.