• Title/Summary/Keyword: full state feedback

검색결과 93건 처리시간 0.036초

PREVIEW CONTROL OF ACTIVE SUSPENSION WITH INTEGRAL ACTION

  • Youn, I.;Hac, A.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.547-554
    • /
    • 2006
  • This paper is concerned with an optimal control suspension system using the preview information of road input based on a quarter car model. The main purpose of the control is to combine good vibration isolation characteristics with improved attitude control. The optimal control law is derived with the use of calculus of variation, consisting of three parts. The first part is a full state feedback term that includes integral control acting on the suspension deflection to ensure zero steady-state deflection in response to static body forces and ramp road inputs. The second part is a feed-forward term which compensates for the body forces when they can be detected, and the third part depends on previewed road input. The performance of the suspension is evaluated in terms of frequency domain characteristics and time responses to ramp road input and cornering forces. The effects of each part of the suspension controller on the system behavior are examined.

Transmit Antenna Selection for Multi-user MIMO Precoding Systems with Limited Feedback

  • Mohaisen, Manar
    • Journal of information and communication convergence engineering
    • /
    • 제9권2호
    • /
    • pp.193-196
    • /
    • 2011
  • Transmit antenna selection techniques are prominent since they exploit the spatial selectivity at the transmitter side. In the literature, antenna selection techniques assume full knowledge of the channel state information (CSI). In this paper, we consider that the CSI is not perfectly known at the transmitter; however, a quantized version of the channel coefficients is fed back by the users. We employ the non-uniform Lloyd-Max quantization algorithm which takes into consideration the distribution of the channel coefficients. Simulation results show that the degradation in the BER of the system with imperfect CSI at the transmitter is tolerable, especially when the transmit diversity order is high.

PID형 슬라이딩모우드에 의한 전기,유압서보계의 위치제어에 관한 연구

  • 하석홍;이진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.157-161
    • /
    • 1992
  • Up to now, there has been a lot of researches on the sliding mode control which has the insensitive characteristics to the variations of plant parameters, nonlinearities and external disturbances. One dificulty in applying the sliding mode control is the need for the knowledge of the full-state vector. The use of state observer is a natural step towards the relaxation of this condition. However, the exact plant-modeling is assumed to be known. Recently, there has been a remarkable advance in the microprocessor and one can construct the controller which could not realize due to hardware restriction in the past. Therefore in this paper, the PID sliding mode controller which has only one output feedback signal is suggested by means of microprocessor and the performance of electro-hydraulic servosystem compersated with this controller is proved.

Analysis and Improvement of Low-Frequency Control of Speed-Sensorless AC Drive Fed by Three-Level Inverter

  • Chang Jie (Jay)
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.358-365
    • /
    • 2005
  • In induction machine drive without a speed sensor, the estimation of the motor flux and speed often becomes deteriorated at low speeds with low back EMF. Our analysis shows that, in addition to the state resistance variation, the estimated value of field orientation angle is often corrupted by accumulative errors from the integration of voltage variables at motor terminals that have low signal/noise ratio at low frequencies. A repetitive loop path of integration in the feedback can amplify this type of error, thus speeding up the degradation process. The control system runs into information starvation due to the loss of correct field orientation. The machine's spiral vectors are controlled only in a reduced dimension in this situation. A novel control scheme is developed to improve the control performance of motor's current, torque and speed at low frequencies. The scheme gains a full-dimensional vector control and is less sensitive to the combined effect of the error sources at the low frequencies. Experimental tests demonstrate promising performances are achievable even below 0.5 Hz.

PID 형 슬라이딩모우드에 의한 전기.유압서보계의 위치제어에 관한 연구 (A Study on the Position Control of Electro-hydraulic Sevosystem using PID Sliding Mode)

  • 하석홍
    • 한국정밀공학회지
    • /
    • 제9권4호
    • /
    • pp.126-135
    • /
    • 1992
  • Up to now, there has been a lot of researches on the sliding mode control which has the insensitive characteristics to the variations of plant parameters, nonlinearities and external disturbances. One difficulty in applying the sliding mode control is the need for the knowledge of the full-state vector. The use of state observer is a natural step towards the relaxation of this condition. However, the exact plant-modeling is assumed to be known. Recently, there has been a remarkable advance in the microprocessor and one can construct the controller which could not realize due to hardware restriction in the past. Therefore in this paper, the PID sliding mode controller which has only one output feedback signal is suggested by means of microprocessor and the performance of electro-hydraulic servosystem compensated with this controller is proved.

  • PDF

Grid Voltage-sensorless Current Control of LCL-filtered Grid-connected Inverter based on Gradient Steepest Descent Observer

  • Tran, Thuy Vi;Kim, Kyeong-Hwa
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.380-381
    • /
    • 2019
  • This paper presents a grid voltage-sensorless current control design for an LCL-filtered grid-connected inverter with the purpose of enhancing the reliability and reducing the total cost of system. A disturbance observer based on the gradient steepest descent method is adopted to estimate the grid voltages with high accuracy and light computational burden even under distorted grid conditions. The grid fundamental components are effectively extracted from the estimated gird voltages by means of a least-squares algorithm to facilitate the synchronization process without using the conventional phase-locked loop. Finally, the estimated states of inverter system obtained by a discrete current-type full state observer are utilized in the state feedback current controller to realize a stable voltage-sensorless current control scheme. The effectiveness of the proposed scheme is validated through the simulation results.

  • PDF

An Improved Active Damping Method with Capacitor Current Feedback

  • Geng, Yi-Wen;Qi, Ya-Wen;Liu, Hai-Wei;Guo, Fei;Zheng, Peng-Fei;Li, Yong-Gang;Dong, Wen-Ming
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.511-521
    • /
    • 2018
  • Proportional capacitor current feedback active damping (CCFAD) has a limited valid damping region in the discrete time domain as (0, $f_s/6$. However, the resonance frequency ($f_r$) of an LCL-type filter is usually designed to be less than half the sampling frequency ($f_s$) with the symmetry regular sampling method. Therefore, ($f_s/6$, $f_s/2$) becomes an invalid damping region. This paper proposes an improved CCFAD method to extend the valid damping region from (0, $f_s/6$ to (0, $f_s/2$), which covers all of the possible resonance frequencies in the design procedure. The full-valid damping region is obtained and the stability margin of the system is analyzed in the discrete time domain with the Nyquist criterion. Results show that the system can operate stably with the proposed CCFAD method when the resonance frequency is in the region (0, $f_s/2$). The performances at the steady and dynamic state are enhanced by the selected feedback coefficient H and controller gain $K_p$. Finally, the feasibility and effectiveness of the proposed CCFAD method are verified by simulation and experimental results.

제한적 궤환량 사용 시 부분적 CoMP 전송의 성능 이득 (Performance Advantage of Partial CoMP Transmission Using Finite Feedback)

  • 박재용;성원진
    • 한국전자파학회논문지
    • /
    • 제23권1호
    • /
    • pp.14-20
    • /
    • 2012
  • 셀룰러 이동 통신 시스템에서 협력적으로 신호를 전송하는 CoMP(Coordinated Multi-Point transmission and reception) 방식은 기지국 간 간섭을 매우 효과적으로 제어하여 시스템의 전송률을 증가시킨다. 그러나 협력적 전송에 참여하는 기지국의 개수가 증가할수록 기지국 간 공유가 요구되는 채널 상태 정보 및 전송 데이터의 교환으로 인한 오버헤드가 비약적으로 증가하는 문제를 발생시킨다. 본 논문에서는 제한적 궤환량을 고려하여 전송 효율이 높은 기지국들만을 협력적 전송에 참여시키는 부분적 CoMP 전송 방식을 제안한다. 이를 위해 시스템 내 코어 망은 사용자가 선호하는 기지국 정보를 반영하여 협력 기지국 조합을 구성한다. 또한, 사용자들의 채널 환경에 따라 선호하는 협력 기지국 조합이 상이할 수 있으므로 코어 망은 구성된 협력 기지국 조합을 다이나믹하게 변형하여 적용한다. 컴퓨터 시뮬레이션을 이용하여 제한적 궤환량 사용 시 기존의 비협력적 기지국 전송 방식과 협력적 기지국 전송 방식과의 평균 전송률 성능을 비교하고, 이를 통해 제안 방식의 우수성을 입증한다.

칼만 필터를 이용한 유연성 매니퓨레이터의 최적 제어 (Optimal Control of a Flexible Manipulator Using Kalman Filter)

  • 남호법;박종국
    • 한국통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.155-163
    • /
    • 1989
  • 단일 링크 유연성 로보트 팔의 제어를 위해서 가정 모드 방법으로 유도된 동 특성 모델링에 QUADRATIC-최적제어 이론을 적용하였다. 이 제어 기법에 대한 제어 루우프 구성에는 모든 상태값의 피이트 백을 필요로 하지만 유연성 팔에 있어서 모드형태의 시 종속 변화율은 직접 출력으로부터 피이드백 될수 없기 때문에 최적 제어기를 실현하기 위해서는 상태 추정기의 도입이 필요하게 된다. 특히 시스템에 외란이나 측정에 노이즈가 발생할 때는 확률 추정 방법을 적용해서 상태를 추정해야 하는데 이를 위해서 칼만 필터를 사용하였다. 상태 추정기를 이용한 유연성 메니퓨레이터 팔의 시스템 모델을 모든 상태 값이 직접 측정될 수 있다고 가정한 유연성 시스템 모델과 시뮤레이션을 통해서 비교하였다.

  • PDF

Three-Level Boost Converter의 개선된 모델링 및 더블 루프 제어기 설계에 관한 연구 (An Study on the Improved Modeling and Double Loop Controller Design for Three-Level Boost Converter)

  • 이규민;김일송
    • 전력전자학회논문지
    • /
    • 제25권6호
    • /
    • pp.442-450
    • /
    • 2020
  • A small-signal modeling approach for a three-level boost (TLB) converter and a design methodology for a double-loop controller are proposed in this study. Conventional modeling of TLB converters involves three state variables. Moreover, TLB converters have two operation modes depending on the duty ratio. Consequently, complex mathematical calculations are required for controller design. This study proposes a simple system modeling method that uses two state variables, unlike previous methods that require three state variables. Analysis shows that the transfer functions of the two operation modes can be expressed as identical equations. This condition means that the linear feedback controller can be applied to all operational ranges, that is, for full duty ratios. The design method for a double-loop controller using a PI controller is presented in step-by-step sequences. Simulation and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.