• 제목/요약/키워드: full state feedback

검색결과 93건 처리시간 0.047초

Fundamental restrictions for the closed-loop control of wind-loaded, slender bridges

  • Kirch, Arno;Peil, Udo
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.457-474
    • /
    • 2009
  • Techniques for stabilising slender bridges under wind loads are presented in this article. A mathematically consistent description of the acting aerodynamic forces is essential when investigating these ideas. Against this background, motion-induced aerodynamic forces are characterised using a linear time-invariant transfer element in terms of rational functions. With the help of these functions, the aeroelastic system can be described in the form of a linear, time-invariant state-space model. It is shown that the divergence wind speed constitutes an upper bound for the application of the selected mechanical actuators. Even active control with full state feedback cannot overcome this limitation. The results are derived and explained with methods of control theory.

Average performance of risk-sensitive controlled orbiting satellite and three-degree-of-freedom structure

  • Won, Chang-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.444-447
    • /
    • 1995
  • The satellite in a circular orbit about a planet with disturbances and a three-degree-of-freedom (3DOF) structure under seismic excitations are modeled by the linear stochastic differential equations. Then the risk-sensitive optimal control method is applied to those equations. The mean and the variance of the cost function varies with respect to the risk-sensitivity parameter, .gamma.$_{RS}$ . For a particular risk-sensitivity parameter value, risk-sensitive control reduces to LQG control. Furthermore, the derivation of the mean square value of the state and control action are given for a finite-horizon full-state-feedback risk-sensitive control system. The risk-sensitive controller outperforms a classical LQG controller in the mean square sense of the state and the control action.

  • PDF

DC 모터를 위한 전류궤환형 학습제어기 설계 (Design of Current-Feedback Control for DC Motors)

  • 백승민;김진홍;국태용
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1520-1526
    • /
    • 1999
  • This paper presents a current feedback learning controller for dynamic control of DC motors. The proposed controller uses the full third-order dynamics model of DC motor system to drive stable learning rules for virtual current learning input, voltage learning input, and the coefficient of electromotive force. It is shown that the proposed learning controller drives the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one globally asymptotically. Computer simulation and experimental results are given to demonstrate the effectiveness of the proposed adaptive learning controller.

  • PDF

Controller optimization with constraints on probabilistic peak responses

  • Park, Ji-Hun;Min, Kyung-Won;Park, Hong-Gun
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.593-609
    • /
    • 2004
  • Peak response is a more suitable index than mean response in the light of structural safety. In this study, a controller optimization method is proposed to restrict peak responses of building structures subject to earthquake excitations, which are modeled as partially stationary stochastic process. The constraints are given with specified failure probabilities of peak responses. LQR is chosen to assure stability in numerical process of optimization. Optimization problem is formulated with weightings on controlled outputs as design variables and gradients of objective and constraint functions are derived. Full state feedback controllers designed by the proposed method satisfy various design objectives and output feedback controllers using LQG also yield similar results without significant performance deterioration.

구조적 복잡성을 감소시킨 로봇 머니퓰레이터 적응 퍼지 제어 (Adaptive Fuzzy Control with Reduced Complexity for Robot Manipulators)

  • 장진수;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1775-1776
    • /
    • 2008
  • This paper presents a adaptive fuzzy control suitable for motion control of multi-link robot manipulators with uncertainties. When joint velocities are available, full state adaptive fuzzy feedback control is designed to ensure the stability of the closed loop dynamic. If the joint velocities are not measurable, an observer is introduced and an adaptive output feedback control is designed based on the estimated velocities. To reduce the number of fuzzy rules of the fuzzy controller, we consider the properties of robot dynamics and the decomposition of the unknown input gain matrix. The proposed controller is robust against uncertainties and external disturbances. The validity of the control scheme is demonstrated by computer simulations on a two-link robot manipulator.

  • PDF

근접 센서를 이용한 로봇 손의 파지 충격 개선 (Grasping Impact-Improvement of Robot Hands using Proximate Sensor)

  • 홍예선;진성무
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.42-48
    • /
    • 1999
  • A control method for a robot hand grasping a object in a partially unknown environment will be proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Particularly, the finger joints were driven servo-pneumatically in this study. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases ; fast aproach, slow transitional contact and contact force control. That is, the fingertip approached to the object with full speed, until the output signal of the proximate sensor began to change. Within the perating range of the proximate sensor, the finger joint was moved by a state-variable feedback position controller in order to obtain a smooth contact with the object. The contact force of fingertip was then controlled using the blocked-line pressure sensitivity of the flow control servovalve for finger joint control. In this way, the grasping impact could be reduced without reducing the object approaching speed. The performance of the proposed grasping method was experimentally compared with that of a open loop-controlled one.

  • PDF

PDFF 제어기법을 이용한 단상 UPS 인버터 전압, 전류제어에 관한 연구 (A study on single phase UPS inverter control with PDFF method)

  • 오방원;이상용;이용균;전윤석;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.799-802
    • /
    • 2004
  • There are many methods in controlling inverter's voltage and currents. most of all, PI control method is a general method. PI control has some merits. But, PI control has zero effect. So, steady-state response errors always exist by the zero effect. For removing the steady-state error, This paper presents the modeling, design and analysis of the double loop feedback control scheme. and computing the value of parameters and applying In the single-phase full bridge inverter for comparison and analysis between the PI control and PDFF control. The system model is employed to examine the dynamics of power circuit and select appropriate feedback variables for stable operation of the closed-loop UPS inverter system. It analyzes and proves the output characteristic of inverter system with the PDFF control.

  • PDF

Wall-Following Control of a Two-Wheeled Mobile Robot

  • Chung, Tan-Lam;Bui, Trong-Hieu;Kim, Sang-Bong;Oh, Myung-Suck;Nguyen, Tan-Tien
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1288-1296
    • /
    • 2004
  • Wall-following control problem for a mobile robot is to move it along a wall at a constant speed and keep a specified distance to the wall. This paper proposes wall-following controllers based on Lyapunov function candidate for a two-wheeled mobile robot (MR) to follow an unknown wall. The mobile robot is considered in terms of kinematic model in Cartesian coordinate system. Two wall-following feedback controllers are designed: full state feedback controller and observer-based controller. To design the former controller, the errors of distance and orientation of the mobile robot to the wall are defined, and the feedback controller based on Lyapunov function candidate is designed to guarantee that the errors converge to zero asymptotically. The latter controller is designed based on Busawon's observer as only the distance error is measured. Additionally, the simulation and experimental results are included to illustrate the effectiveness of the proposed controllers.

출력궤한 가변구조제어게의 강인성 설계 (Design of output feedback variable structure control system with robust properties)

  • 이기상;임재형;이정동
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1199-1205
    • /
    • 1993
  • It has been well known that the assumption of full state availability is one of the most important restrictions to the practical realization of VSCS. And several attempts to alleviate the assumption had been made. However, it is not easy to find a positive scheme among them. Recently, an output feedback variable structure control system(OFVSCS) was proposed and the effectiveness of the scheme was validated for the disturbance free systems. The purpose of this study is to propose a robust OFVSCS that have the robust properties against process parameter variations and external distrubances by extending the basic OFVSCS and to evaluate its control performances through power system stabilizer design example. The ROFVSCS is composed of dynamic switching function and output feedback switching control inputs that are constructed by the use of the unknown vector modeling technique. With the proposed scheme, existence of sliding mode is guaranteed and any nonzero bias can be suppressed in the face of disturbances and process parameter variations as far as well-known matching condition is satisfied. Due to the fact that the ROFVSCS is driven by small number of measured informations, the practical application of VSCS for the systems with unmeasurable states and for high order systems that conventional schemes cannot be applied, is possible with the proposed scheme. It is noticeable that the implementation cost of VSCS can be considerably reduced without sacrifice of control performances by adopting ROFVSCS since there is no need measure the states with high measurement cost.

  • PDF

강인한 출력궤환 가변구조제어계의 설계 (Design of Robust Output Feedback Variable Structure Control System)

  • 이기상;임재형
    • 대한전기학회논문지
    • /
    • 제43권3호
    • /
    • pp.458-467
    • /
    • 1994
  • It has been well known that the assumption of full state availability is one of the most important restrictions to the practical realization of VSCS. And several attempts to alleviate the assumption had been made. however, it is not easy to find a positive scheme among them. Recently, an output feedback variable structure control system(OFVSCS) was proposed and the effectiveness of the scheme was validated for the disturbance free systems. The purpose of this study is to propose a robust OFVSCS that have the robust properties against process parameter variations and external disturbances by extending the basic OFVSCS and to evaluate its control performances. The ROFVSES is composed of dynamic switching function and output feedback switching control inputs that are constructed by the use of the unknown vector modeling technique. With the proposed schems, existence of sliding mode is guaranteed and any nonzero bias can be suppressed in the face of disturbances and process parameter variations as far as well-known matching condition is satisfied. Due to the fact that the ROFVSCS is driven by small number of measured informations, the practical application of VSCS for the systems with unmeasurable states and for high order systems, the conventional schemes cannot be applied, is possible with the proposed scheme. It is noticeable that the implementation cast of VSCS can be considerably reduced without sacrifice of control performances by adopting ROFVSCS since there is no need to measure the states with high measurement cost.