• Title/Summary/Keyword: full energy efficiency

Search Result 274, Processing Time 0.032 seconds

Low-Power MPPT Interface for Vibration Energy Harvesting Sources (진동 에너지 하베스팅 자원을 위한 저전력 MPPT 인터페이스)

  • Song, Soo-Min;Kim, Hyun-Chul;Lee, Eun-Gyeong;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.39-42
    • /
    • 2018
  • In this paper, a low-power MPPT interface circuit for vibration energy harvesting sources is presented. The designed circuit rectifies the harvested ac type energy to the dc type energy required to drive the system, and periodically samples and holds the open circuit voltage (Voc) through the MPPT controller, and transfers the harvested power to the load while maintaining the input voltage at 1/2 of the maximum available power point. All circuits have been designed using a 0.35-um CMOS technology, and the operation has been verified through simulation. Simulation results show that the designed circuit consumes 98nA of current at 3V input voltage and the maximum power efficiency is 99.21%. The designed chip occupies $1.281mm{\times}1.236mm$.

  • PDF

Highly Efficient and Stable Organic Photo-Sensitizers based on Triphenylamine with Multi-anchoring Chromophore for Dye-sensitized Solar Cells (트리페닐아민을 이용한 염료감응형 태양전지 고효율 염료합성)

  • Yang, Hyunsik;Jung, Daeyoung;Jung, Miran;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.1-88.1
    • /
    • 2010
  • Organic dyes, because of their many advantages, such as high molar extinction coefficients, convenience of customized molecular design for desired photophysical and photochemical properties, inexpensiveness with no transition metals contained, and environment-friendliness, are suitable as photosensitizers for the Dye-sensitized Solar Cell (DSSC). The efficiency of DSSC based on metal-free organic dyes is known to be much lower than that of Ru dyes generally, but a high solar energy-to-electricity conversion efficiency of up to 8% in full sunlight has been achieved by Ito et al. using an indoline dye. This result suggests that smartly designed and synthesized metal-free organic dyes are also highly competitive candidates for photosensitizers of DSSCs with their advantages mentioned above. Recently, the performance of DSSC based on metal-free organic dyes has been remarkably improved by several groups. We had reported the novel organic dye with double electron acceptor chromophore, which was a new strategy to design an efficient photosensitizer for DSSC. To verify the strategy, we synthesized organic dyes whose geometries, electronic structures and optical properties were derived from preceding density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. In this paper, we successfully synthesized the chromophore containing multi-acceptor push-pull system from triphenylamine with thiophene moieties as a bridge unit. Organic dyes with a single electron acceptor and double acceptor system were also synthesized for comparison purposes. The photovoltaic performances of these dyes were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were also measured in order to characterize the effects of the multi-anchoring groups on the open-circuit voltage and the short-circuit current. In order to match specifications required for practical applications to be implemented outdoors, light soaking and thermal stability tests of these DSSCs, performed under $100mWcm^{-2}$ and $60^{\circ}C$ for 1000h.

  • PDF

A Low-voltage Vibration Energy Harvesting System with MPPT Control (MPPT 제어 기능을 갖는 저전압 진동 에너지 하베스팅 시스템)

  • An, Hyun-jeong;Kim, Ye-chan;Hong, Ye-jin;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.477-480
    • /
    • 2015
  • In this paper a low-voltage vibration energy harvesting circuit with MPPT(Maximum Power Point Tracking) control is proposed. By employing bulk-driven technique, the minimum operating voltage of the proposed circuit is as low as 0.8V. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a full-wave rectifier circuit connected to the piezoelectric device output and delivers the maximum available power to load. The proposed circuit is designed using a $0.35{\mu}m\;CMOS$ process, and the chip area including pads is $1.33mm{\times}1.31mm$. Simulation results show that the maximum power efficiency of the designed circuit is 85.49%.

  • PDF

Study of the Efficiency Droop Phenomena in GaN based LEDs with Different Substrate

  • Yoo, Yang-Seok;Li, Song-Mei;Kim, Je-Hyung;Gong, Su-Hyun;Na, Jong-Ho;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.172-173
    • /
    • 2012
  • Currently GaN based LED is known to show high internal or external efficiency at low current range. However, this LED operation occurs at high current range and in this range, a significant performance degradation known as 'efficiency droop' occurs. Auger process, carrier leakage process, field effect due to lattice mismatch and thermal effects have been discussed as the causes of loss of efficiency, and these phenomena are major hindrance in LED performance. In order to investigate the main effects of efficiency loss and overcome such effects, it is essential to obtain relative proportion of measurements of internal quantum efficiency (IQE) and various radiative and nonradiative recombination processes. Also, it is very important to obtain radiative and non-radiative recombination times in LEDs. In this research, we measured the IQE of InGaN/GaN multiple quantum wells (MQWs) LEDs with PSS and Planar substrate using modified ABC equation, and investigated the physical mechanism behind by analyzing the emission energy, full-width half maximum (FWHM) of the emission spectra, and carrier recombination dynamic by time-resolved electroluminescence (TREL) measurement using pulse current generator. The LED layer structures were grown on a c-plane sapphire substrate and the active region consists of five 30 ${\AA}$ thick In0.15Ga0.85N QWs. The dimension of the fabricated LED chip was $800um{\times}300um$. Fig. 1. is shown external quantum efficiency (EQE) of both samples. Peak efficiency of LED with PSS is 92% and peak efficiency of LED with planar substrate is 82%. We also confirm that droop of PSS sample is slightly larger than planar substrate sample. Fig. 2 is shown that analysis of relation between IQE and decay time with increasing current using TREL method.

  • PDF

Absorptive Separation of Sulfur Dioxide using Flat Membrane Contactor (평판형 분리막 접촉기를 이용한 이산화황 흡수 분리)

  • Lee Yong-Taek;Lee Young-Jin;Song In-Ho;Jeon Hyun-Soo;Ahn Hyo-Seong;Lee Hyung-Keun
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.196-203
    • /
    • 2006
  • A flue gas emission known to cause an acid rain, containing sulfur dioxide, is tightly controlled by a regulation. The membrane contactor could be one of the alternatives which might be useful technologies for better performance of desulfurization. The fundamental sulfur dioxide separation data were obtained by a flat membrane contactor so that they could be utilized for the full scale membrane contactor. The separation of sulfur dioxide was measured in terms of the concentration of NaOH absorbent, the concentration of sulfur dioxide, the feed flow rate and different membrane materials. As the concentration of absorbent increased, the removal efficiency increased. By increasing the concentration of sulfur dioxide, the removal efficiency decreased. As the feed flow rate increased, it was observed that the removal efficiency decreased. Finally, the effect of the membrane material on separation was found to be negligible.

Analytical-numerical formula for estimating the characteristics of a cylindrical NaI(Tl) gamma-ray detector with a side-through hole

  • Thabet, Abouzeid A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3795-3802
    • /
    • 2022
  • NaI(Tl) scintillation materials are considered to be one of many materials that are used exclusively for γ-ray detection and spectroscopy. The gamma-ray spectrometer is not an easy-to-use device, and the accuracy of the numerical values must be carefully checked based on the rules of the calibration technique. Therefore, accurate information about the detection system and its effectiveness is of greater importance. The purpose of this study is to estimate, using an analytical-numerical formula (ANF), the purely geometric solid angle, geometric efficiency, and total efficiency of a cylindrical NaI(Tl) γ-ray detector with a side-through hole. This type of detector is ideal for scanning fuel rods and pipelines, as well as for performing radio-immunoassays. The study included the calculation of the complex solid angle, in combination with the use of various points like gamma sources, located axially and non-axially inside the through detector side hole, which can be applied in a hypothetical method for calibrating the facility. An extended γ-ray energy range, the detector, source dimensions, "source-to-detector" geometry inside the side-through hole, path lengths of γ-quanta photons crossing the facility, besides the photon average path length inside the detector medium itself, were studied and considered. This study is very important for an expanded future article where the radioactive point source can be replaced by a volume source located inside the side-trough hole of the detector, or by a radioactive pipeline passing through the well. The results provide a good and useful approach to a new generation of detectors that can be used for low-level radiation that needs to be measured efficiently.

Developement of Electrical Load Testing System Implemented with Power Regenerative Function (회생전력 기능을 갖는 전기부하시험장치 개발)

  • Do, Wang-Lok;Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The electrical load testing system developed from this study was designed to control rated-capacity-testing or variable-load-testing in an active and precise manner and save electric energy during testing, and also to convert the saved electric energy through the electrical load testing system to grid line. As for the device under testing, it was designed to be applied to not only transformer, rectifier, voltage regulator, inverter which require grid voltage source but, also applied to electric power, aerogenerator, photovoltaic, hybrid generator, battery, etc. which do not require grid voltage source. The system was designed to return the power consumed during the testing to the grid line by connecting the synchronizing pwm inverter circuit to the grid voltage source, and was also made to enable the being-tested system from disuse of approximately 93.4% energy when compared to the conventional load testing system which has used the passive resistor.

Parallelizing 3D Frequency-domain Acoustic Wave Propagation Modeling using a Xeon Phi Coprocessor (제온 파이 보조 프로세서를 이용한 3차원 주파수 영역 음향파 파동 전파 모델링 병렬화)

  • Ryu, Donghyun;Jo, Sang Hoon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.129-136
    • /
    • 2017
  • 3D seismic data processing methods such as full waveform inversion or reverse-time migration require 3D wave propagation modeling and heavy calculations. We compared efficiency and accuracy of a Xeon Phi coprocessor to those of a high-end server CPU using 3D frequency-domain wave propagation modeling. We adopted the OpenMP parallel programming to the time-domain finite difference algorithm by considering the characteristics of the Xeon Phi coprocessors. We applied the Fourier transform using a running-integration to obtain the frequency-domain wavefield. A numerical test on frequency-domain wavefield modeling was performed using the 3D SEG/EAGE salt velocity model. Consequently, we could obtain an accurate frequency-domain wavefield and attain a 1.44x speedup using the Xeon Phi coprocessor compared to the CPU.

Emission and Structural Properties of Titanium Oxide Nanoparticles-coated a-plane (11-20) GaN by Spin Coating Method

  • Kim, Ji-Hoon;Son, Ji-Su;Baik, Kwang-Hyeon;Park, Jung-Ho;Hwang, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.146-146
    • /
    • 2011
  • The blue light emitting diode (LED) structure based on non-polar a-plane (11-20) GaN which was coated TiO2 nanoparticles using spin coating method was grown on r-plane (1-102) sapphire substrates to improve light extraction efficiency. We report on the emission and structural properties with temperature dependence of photoluminescence (PL) and x-ray rocking curves (XRC). From PL results at 13 K of undoped GaN samples, basal plane stacking fault (BSF) and near band edge (NBE) emission peak were observed at 3.434 eV and 3.484 eV, respectively. We also found the temperature-induced band-gap shrinkage, which was fitted well with empirical Varshini's equation. The PL intensity of TiO2 nanoparticles ?coated multiple quantum well (MQW) sample is decayed slower than that of no coating sample with increasing temperature. The anisotrophic strain and azimuth angle dependence in the films were shown from XRC results. The full width at half maximum (FWHM) along the GaN [11-20] and [1-100] directions were 564.9 arcsec and 490.8 arcsec, respectively. A small deviation of FWHM values at in-plane direction is attributed to uniform in-plane strain.

  • PDF

A Study on Lighting Performance Evaluation of Light-Shelf using Crystal Face (결정면 적용 광선반 채광성능 평가 연구)

  • Lee, Heangwoo;Rogers, Kyle Eric;Seo, Janghoo;Kim, Yongseong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.395-401
    • /
    • 2015
  • Recently, many research studies have been carried out on the efficiency of light-shelf daylighting systems, especially comparing performance improvements and the limitations of reflective surfaces and their lighting performance. In this study, a crystal face reflective surface is proposed. The objective of the study is to evaluate the lighting performance of a crystal face light-shelf through a performance study. The performance study was carried out in a full scale test-bed in order to calculate the light distribution and energy consumption utilizing the standard indoor illumination as an index. The conclusions of the performance study are as follows. 1) The optimal angle of incidence for daylighting for both the operable flat type light-shelf and the crystal face light-shelf are taken in the natural environment on the dates of the winter and summer solstices, as well as the autumn and spring equinoxes. 2) The application and installation of the crystal face light-shelf can produce a 29.9%~34.3% increase of light distribution within the indoor space. However, the increase of light distribution can also lead to a decrease in the uniformity ratio, a design challenge that should be considered when applying a crystal face light-shelf. 3) It is possible to achieve a 7.98%~13.3% greater reduction in energy consumption when applying a crystal face light-shelf than when applying a flat type light-shelf. The increase in the number of crystal faces should concur with the analysis of the energy reduction. A limitation of the study is that only one predetermined pattern was performance tested for a crystal face light-shelf. In order to carry out further research on crystal face light-shelves, additional performance studies are needed based on alternative patterns and designs.