• Title/Summary/Keyword: fuel use

Search Result 1,718, Processing Time 0.03 seconds

POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

  • Ryu, H.J.;Park, J.M.;Jeong, Y.J.;Lee, K.H.;Lee, Y.S.;Kim, C.K.;Kim, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.847-858
    • /
    • 2013
  • Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea) in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4-5 $g-U/cm^3$ were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr), additional protective coatings (silicide or nitride), and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al.

An Improvement of Voltage Disturbances for Fuel Cell Systems (연료 전지 시스템의 전압왜란 개선)

  • Moon Hyun-Wook;Jeong Eun-Jin;Kim Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.245-252
    • /
    • 2005
  • The fuel cell systems are one of very useful energy sources. The systems have advantages as renewable and environmental sources. To obtain AC components from fuel cells, it needs inverters. A multilevel converter is used as a power conversion system for a high power fuel cell system. Through harmonic analysis, it is shown that the harmonic components and THD increase while a fundamental component of output decreases as voltage droop increases. To solve the voltage disturbance problems, three different approaches are investigated in this paper; installation of a boost converter at the fuel cell output, control of pulse widths, and use of ultracapacitors. The proposed three approaches are analyzed and compared through simulation and experimental results.

A Study on the Optimization of Fuel Allocation for the Management of Sulfur Dioxide Pollution (亞黃酸가스 汚染度 管理를 위한 燃料配分의 最適化에 관한 硏究)

  • 安徹;金丁勖
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.103-110
    • /
    • 1986
  • Since sulfur dioxide is released from the oxidation of sulfur in fuel, the level of $SO_2$ in industrial areas can be effectively managed by optimizing the allocation of fuels: the fuel should be allocated to each industries so as to achieve the air quality goal in the area with minimum fuel cost. The solution for this can be by solved using linear programming technique incorporated with the Gaussian dispersion equation. When this method was applied in Ulsan Industrial Complex, 39.3% of fuel expense could be saved compared with the present uniform fuel policy. With this method, bituminous coal generally was allocated to big emission sources such as power plants or to industries sparsely located in remote areas, and LPG or low-sulfur oils to small or medium-size sources in dense indurstrial aras. However, the particulates emission will increase with this policy, because it maximizes the use of coal within the limit to achieve the air quality goal in the area.

  • PDF

A Study on the Characteristics of Combustion and Performance by Changing Temperature in Diesel Fuel (디젤연료 온도변화가 기관성능 및 연소특성에 관한 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.110-116
    • /
    • 2017
  • Recently the global warming caused by greenhouse gas has emerged as a global environmental problem. For this reason the continued efforts to reduce greenhouse gas emission by international cooperation and each country are in progress. Climate changing has been recognized as the world economy development from fossil fuel use is the culprit. The international maritime organization marine environment protection committee of the global warming reduction emerged restrictions on air pollution have been strengthened. Therefore, the author has investigated the effects of fuel temperature on the characteristics of combustion and performance, using an four-cycle, six cylinders and direct injection diesel engine. The results of cylinder pressure, rate of pressure rise, rate of heat release and specific fuel consumption were increased by changing of fuel temperature.

An Ultrasonic Breaking Action on the Homogeneous Effect of Marine Oil Particles (선박유류 입자의 균질효과에 미치는 초음파 분쇄작용)

  • 이진열;하만식;한원희
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.67-78
    • /
    • 1999
  • Recently, a greater part of all ship use a coarse heavy fuel oil(HFO) over specific gravity(S.G) 1.00/15$^{\circ}C$ and viscosity 3,500 cSt/4$0^{\circ}C$ as the fuel oil of marine boiler or internal combustion engine from the viewpoint of economical ship' operation. The greater plan to improve a combustion methods of heavy fuel oil, such as atomization, homogeneity and emulsification, were contrived and carried out newly, and then applied 20kHz ultrasonic homogenizer to one of test methods. Also, adopted the marine oils(fuel oil and lubricating oil etc.) and sludge oil as test solutions, and its matrix structures were examined with photographs, Especially, it is important at control system of oil pollution, for the sludge oil emulsified, to be recycled as fuel oil of boiler according to 20kHz Ultrasonic homozenizer, and then fuel saving is attained effectively by making sludge oil to be burnt.

  • PDF

A study on combustion of blended straight vegetable oil in marine diesel engine cylinders

  • Nguyen, Dai An;Tran, The Nam;Dang, Van Uy
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.813-820
    • /
    • 2015
  • Straight vegetable oil (SVO) is widely recommended as fuel for diesel engines in general and especially for marine diesel engines. However, SVOs used directly as fuel for diesel engines may cause problems for the engines; SVOs blended with diesel oil are a better choice. To widen understanding of the possibility of using blended SVOs as fuel alternatives, this paper presents results of experimental research on the combustion of blended straight vegetable oil in a marine diesel engine's cylinders. Results show that the fuel combustion process have the same curves as in simulations and, in the case of using blended fuels with up to 20% palm oil, the test diesel engine technical parameters such as engine output, exhaust gas temperatures, and specific fuel consumption are very similar to those of diesel oil (DO). Based on these results, marine diesel engines are strong potential applications and particularly recommended for the use of SVO blends.

A Study on Engine Performance and Exhaust Emission Characteristics of Gasoline Engine using Bio-ethanol Blended Fuel (가솔린 엔진(3.8L)에서 바이오에탄올 혼합연료의 성능 및 배출특성에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.131-137
    • /
    • 2012
  • This article is about using the fuel mixed with 10% and 20% bio-ethanol to gasoline for the engine as a way to reduce carbon emission before commercializing future automobiles like fuel cell cars. The fuel mixed with 10% and 20% bio-ethanol showed output equivalent to that of the previous gasoline fuel. CO and $CO_2$ emission was somewhat reduced, but the difference was not significant. And the consumption of the fuel increased slightly. However, bio-ethanol is produced from bio mass growing with the absorption of carbon dioxide, so the total amount of carbon dioxide did not increase according to the result. In NOx, as the use of ethanol increases, the effect of reduction gets greater, and the emission of oxygen showed almost no change compared with gasoline.

Structure & operation of electronic fuel injection (전자제어식 연료분사장치의 구조와 작동)

  • 목희수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.13-23
    • /
    • 1986
  • The power of an international combustion engine depends on its ability to inhale air whether it is naturally aspirated or turbocharged. The use of fuel injection allows engine efficiency to be increased through a more even distribution of the air/fuel ratio throughout the engine's operation range. The theoretical value for complete combustion in an engine is commonly refered to as stoichiometric, which means that we require 14.7 parts of air to 1 part of gasoline. This stoichiometric ratio can be more closely maintained with electronically controlled fuel injection than it can with carburetion. Because of the greater efficiency of the engine using fuel injection, a horse power increase of at least 10% is produced over its carburetor version. In addition, better fuel economy and less exhaust emissions are also obtained.

  • PDF

A new ALE formulation for sloshing analysis

  • Aquelet, N.;Souli, M.;Gabrys, J.;Olovson, L.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.423-440
    • /
    • 2003
  • Arbitrary Lagrangian Eulerian finite element methods gain interest for the capability to control mesh geometry independently from material geometry, the ALE methods are used to create a new undistorted mesh for the fluid domain. In this paper we use the ALE technique to solve fuel slosh problem. Fuel slosh is an important design consideration not only for the fuel tank, but also for the structure supporting the fuel tank. "Fuel slosh" can be generated by many ways: abrupt changes in acceleration (braking), as well as abrupt changes in direction (highway exit-ramp). Repetitive motion can also be involved if a "sloshing resonance" is generated. These sloshing events can in turn affect the overall performance of the parent structure. A finite element analysis method has been developed to analyze this complex event. A new ALE formulation for the fluid mesh has been developed to keep the fluid mesh integrity during the motion of the tank. This paper explains the analysis capabilities on a technical level. Following the explanation, the analysis capabilities are validated against theoretical using potential flow for calculating fuel slosh frequency.

Sloshing Minimization Technique in Liquid Fuel Tank By the Use of Baffle (배플을 적용한 액체연료탱크 내의 슬로싱 억제 기법 연구)

  • 박기진;윤성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.917-920
    • /
    • 2003
  • The sloshing phenomenon sometimes happens to occur in a liquid fuel tank due to the unexpected and/or inevitable vibrating conditions and may result in severe effects on the structural stability. This study deals with the development of experimental techniques for the evaluation of sloshing behaviors in the liquid fuel tank and for the identification of natural frequencies and mode shapes by varying with various vibrating conditions. Measurements of the pressure and load acting on the side surface of vibrated liquid fuel tank are carried in order to identify the effects of sloshing phenomenon by using various types of baffles. The results show that the baffles can be used to minimize the sloshing phenomenon in liquid fuel tank effectively

  • PDF