• Title/Summary/Keyword: fuel properties

Search Result 1,481, Processing Time 0.027 seconds

Establishment of the design stress intensity value for the plate-type fuel assembly using a tensile test

  • Kim, Hyun-Jung;Tahk, Young-Wook;Jun, Hyunwoo;Kong, Eui-Hyun;Oh, Jae-Yong;Yim, Jeong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.911-919
    • /
    • 2021
  • In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths, Young's modulus and the elongation, are measured with the temperatures. The empirical equations of the material properties with respect to the temperature are presented. The cladding undergoes several heat treatments and hardening processes during the fabrication process. Cladding strengths are reduced compared to those of the raw material during annealing. Up to a temperature of 150 ℃, the strengths of the cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 ℃, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocation recovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95% confidence level, the design stress intensities of the cladding and structural materials are established. The presented design stress intensity values become the basis of the stress design criteria for a safety analysis of plate-type fuels.

Fracture properties and crack tip constraint quantification of 321/690 dissimilar metal girth welded joints by using miniature SENB specimens

  • Bao, Chen;Sun, Yongduo;Wu, Yuanjun;Wang, Kaiqing;Wang, Li;He, Guangwei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1924-1930
    • /
    • 2021
  • By using miniature SENB specimens, the fracture properties of the materials in the region of welded metal, 321 stainless steel heat affected zone, 690 alloy heat affected zone of 321/690 dissimilar metal girth welded joints were tested. Both the J-resistance curves and critical fracture toughness of the three different materials are affected by the crack size because of the effect of crack tip constraint. Groups of constraint corrected J-resistance curves of the three materials are obtained according to J-Q-M approach. The welded metals exhibit the best fracture resistance but the worst fracture resistance is observed in the material of 690 alloy heat affected zone.

Effect of Silica Contents on the Vulcanizates Structure and Physical Properties in ENR/BR Blend Compounds

  • Sanghoon Song;Junhwan Jeong;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • As regulations on greenhouse gas emission have strengthened globally, the demand for improved fuel efficiency in automobiles continues to rise. In response, the tire industry is actively conducting research to improve fuel efficiency by enhancing tire performance. In this study, silica-filled epoxidized natural rubber (ENR)/butadiene rubber (BR) blend compounds were manufactured according to ENR types and silica contents, and their physical properties and vulcanizate structure were evaluated. ENR-50, which has a higher epoxide content than ENR-25, exhibited stronger filler-rubber interaction, resulting in superior abrasion resistance. In addition, because of its high glass transition temperature (Tg), the wet grip performance of ENR-50 improved, even though the rolling resistance increased. Increasing the amount of silica had little effect on the abrasion resistance due to the increase in filler-rubber interaction and decrease in toughness. In addition, ENR-50 exhibited better wet grip performance; however, the rolling resistance increased. The results indicated that truck bus radial (TBR) tire tread compounds can be designed by applying ENR-50 to improve wear resistance and wet grip performance. In addition, by applying ENR-25 and reducing the silica contents improve fuel efficiency.

Electrochemical Evaluation of Mixed Ionic and Electronic Conductor-Proton Conducting Oxide Composite Cathode for Protonic Ceramic Fuel Cells (혼합 이온 및 전자 전도체-프로톤 전도성 전해질 복합 공기극을 적용한 프로토닉 세라믹 연료전지의 전기화학적 성능 평가)

  • HYEONGSIK SHIN;JINWOO LEE;SIHYUK CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.48-55
    • /
    • 2024
  • The electrochemically active site of mixed ionic and electronic conductor (MIEC) as a cathode material is restricted to the triple phase boundary in protonic ceramic fuel cells (PCFCs) due to the insufficient of proton-conducting properties of MIEC. This study primarily focused on expanding the electrochemically active site by La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF6428)-BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411) composite cathode. The electrochemical properties of the composite cathode were evaluated using anode-supported PCFC single cells. In comparison to the LSCF6428 cathode, the peak power density of the LSCF6428-BZCYYb4411 composite cathode is much enhanced by the reduction in both ohmic and non-ohmic resistance, possibly due to the increased electrochemically active site.

Analysis on Ignition Characteristics According to the Chemical Composition of Bio Jet Fuel Synthesized by F-T Process (F-T 공정으로 합성된 바이오항공유의 화학적 조성에 따른 점화특성 분석)

  • Kang, Saetbyeol
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.204-210
    • /
    • 2020
  • In this study, the ignition characteristics of bio jet fuel (Bio-7629, Bio-5172) produced by F-T process and petroleum-based jet fuel (Jet A-1) were compared and analyzed. The ignition delay time of each fuel was measured by means of a combustion research unit (CRU) and the results were explained through an analysis of the properties and composition of the fuel. The ignition delay time of Bio-5172 was the shortest while that of Jet A-1 was the longest because Jet A-1 had the highest surface tension and Bio-5172 had the lowest viscosity in terms of fuel properties that could affect the physical ignition delay time. As a result of the analysis of the constituents' type and ratio, 22.8% aromatic compounds in Jet A-1 could generate benzyl radical, which had low reactivity during the oxidation reaction, affecting the increase of ignition delay time. Both Bio-7629 and Bio-5172 were composed of paraffin only, with the ratio of n-/iso- being 0.06 and 0.80, respectively. The lower the degree of branching is in paraffin, the faster the isomerization of peroxy radical is produced during oxidation, which could determine the propagation rate of the ignition. Therefore, Bio-5172, composed of more n-paraffin, possesses shorter ignition delay time compared with Bio-7629.

Numerical Simulation of Transient Laminar Reacting Flows Around Fuel Droplets (연료액적 주변의 비정상 층류 화염장 해석)

  • You S. W.;Kang S. M.;Kim T. J.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.78-85
    • /
    • 2000
  • The transient laminar reacting flows around fuel droplet have been numerically analyzed. The physical models used in this study can account for the variable thermophysical properties and the chemistry is represent by the one-step global reaction model. The present study is focused on the vaporization and ignition characteristics, flame structure including wake flame, transition flame and envelope flame, and interaction between droplets. special emphasis is given to the triple flame structure and flame stabilization.

  • PDF

DISCUSSION ABOUT HBS TRANSFORMATION IN HIGH BURN-UP FUELS

  • Baron, Daniel;Kinoshita, Motoyasu;Thevenin, Philippe;Largenton, Rodrigue
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.199-214
    • /
    • 2009
  • High burn-up transformation process in low temperature nuclear fuel oxides material was observed in the early sixties in LWR $UO_2$ fuels, but not studied in depth. Increasing progressively the fuel discharge burn-up in PWR power plants, this material transformation was again observed in 1985 and identified as an important process to be accounted for in the fuel simulations due to its expected consequence on fuel heat transfer and therefore on the fission gas release. Fission gas release was one of the major concerns in PWR fuels, mainly during transient or accidents events. The behaviour of such a material in case of rod failure was also an important aspect to analyse. Therefore several national and international programs were launched during the last 25 years to understand the mechanisms leading to the high burn-up structure formation and to evaluate the physical properties of the final material. A large observations database has been acquired, using the more sophisticated techniques available in hot cells. This large database is discussed in this paper, providing basis to build an engineering-model, which is based on phenomenological description data and information accumulated. In addition this paper has the ambition to construct the best logical model to understand restructuring.

Studies on Physical Properties of Sulfonpolyimide for Fuel Cell (연료전지용 술폰폴리이미드의 물성 연구)

  • Ko, Jae-Churl;Ahn, Bum-Jong;Park, Young-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.151-156
    • /
    • 2005
  • Many researchers have been focused on polymer electrolyte membrane (PEM) to improve performance of a fuel cell. Sulfonpolyimide with hydrocarbon was synthesized from ODA (4,4-diaminodiphenyl ether), ODADS (4,4-diaminodiphenyl ether-2,2-disulfonic acid), NTDA (1,4,5,8-naphthalenetetracarboxylicdianhydride) and CSA (chlorosulfonic acid). In order to estimate the feasibility as a fuel cell, the performance of sulfonpolyimide was analyzed through a swelling degree, IEC (ion exchange capacity), ion conductivity and TEM (transmission electron microscope). As the results of this performance test, swelling degree, IEC and ion conductivity were 37%, 0.06 meq/g and 0.08 S/cm respectively, when the CSA concentration was 0.4 M. It was thought that sulfonpolyimide could be used as a fuel cell through improvement of electrolyte membrane.

The Effect of Emission Control Using Electrolytic Seawater Scrubber

  • An, Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.373-377
    • /
    • 2009
  • It is well known that SOx and NOx concentration has a considerable influence on the $N_2O$ emission of the greenhouse gas properties. The quantity of SOx generated during combustion, on fuel specific basis, is directly related to the sulfur content of the fuel oil. However, restricting the fuel oil sulfur content is only a partial response to limiting the overall quantity of SOx emissions, as there remains no over control on the fuel oil consumption other than the commercial pressure which have always directed the attention. This study was carried out as a new basic experiment method of emission control, manly targeted to the vessel. In the experiment, where the scrubbing was achieved through spray tower with high alkaline water made from the electrolysis of seawater, the combined action was to neutralize the exhaust gases (SOx, PM, CO etc.), dilute it, and wash it out. The results showed that SOx reduction of around 95 percent or over could be achieved when using in the high alkaline water, and also leaded to a reduction in the stability of the each pollutant components including the PM (Particulate Matter). The results suggest that the seawater electrolysis method has a very effective reduction of emissions without heavy cost, or catalysts particularly on board.