• Title/Summary/Keyword: fuel oil consumption

Search Result 230, Processing Time 0.026 seconds

A Study on Combustion and exhaust Emission Characteristics with Air Charge in Compression Ignition Diesel Engine (압축착화 디젤기관의 흡기조성에 따른 연소 및 배기배출물 특성에 대한 연구)

  • Kim, Gi-Bok;Kim, Chi-Won;Yoon, Chang-Sik;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.207-215
    • /
    • 2015
  • Since the oil shock of 1970's there was a strong upward tendency for the use of the high viscosity and poorer quality fuels. Therefore the misfiring engine occurs due to the decrease of quantity injected for lean burn and emission control in CI diesel engine. In this study, it is designed and used the test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and emission as operating parameters.

An Assessment of Energy Consumption on Deep Sea Water Cooling System (해양 심층수를 이용한 냉방시스템의 경제성 비교분석)

  • Park, Jin-Youn;Kim, Samuel;Jung, Kyung-Sik;Nam, Min-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1279-1284
    • /
    • 2008
  • The alternative energy has lately attracted considerable attention due to the high oil price and environment problem. Deep sea water that is one of the natural energy sources should be getting popular continually to reduce the environment problem. In this study, cooling system of deep sea water using heat exchangers of two hotels where is located in near Hae-undae Bay has been analyzed on the quantity of electricity comparison between existing cooling system and deep seawater cooling system. As shortly, the results of study showed that the first building approximately saves 370 millions won per year, also the second building saves 248 millions won per year. It means that the cooling system by using deep sea water has great worth to reduce the ratio of fossil fuel.

  • PDF

A speed controller design for low speed marine diesel engine by the $\mu$-synthesis ($\mu$-설계법에 의한 저속 박용디젤기관의 속도제어기 설계)

  • 정병건;양주호;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.60-70
    • /
    • 1995
  • In the field of marine transportation the energy saving is one of the most important factors for profit. In order to reduce the fuel oil consumption the ship's propulsion efficiency must be increased as much as possible. The propulsion efficiency depends upon a combination of an engine and a propeller. The propeller has better efficiency as lower rotational speed. This situation led the engine manufacturers to design the engine that has lower speed, longer stroke and a small number of cylinders. Consequently the variation of rotational torque became larger than before because of the longer delay-time in the fuel oil injection process and an increased output per cylinder. As this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variation of the delay-time and the parameter pertubation. In this paper we consider the delay-time and the perturbation of engine parameters as the modeling uncetainties. Next we design the controller which has zero offset in steady state engine speed, based on the two-degree-of-freedom control theory and $\mu$-synthesis. Thd validity of the controller is investigated through the response simulation. We use a personal computer and an analog computer as the digital controller and the engine (plant) part respectively. And, we certify that the designed controller maintains its performance even though the engine parameters may vary.

  • PDF

A Study on the Energy Saving Method by controlling Capacity of Sea Water Pump in Central Cooling System for Vessel (선박용 중앙냉각시스템의 해수 펌프 용량조절에 따른 에너지 절감 기법에 관한 연구)

  • Lee, Ji-Young;Yoo, Heui-Han;Kim, Yun-Hyung;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.592-598
    • /
    • 2007
  • The fuel charge is getting higher in navigation cost. Therefore, shipowners try to find the method for reducing oil consumption. ESS(Energy Saving System) is one of he method. ESS is the system consisted with two inverters, ESS control unit and monitoring system. Two inverters control two main sea water cooling pumps. In the ESS control Unit, the control algorithm finds optimized point to decrease a power consumption of main sea water cooling pumps. Monitoring system observes ESS not to work improperly. ESS is experimented in the laboratory with real condition and analyzed in every view. After experiment, the result of the experiment shows that the control algorithm works correctly and safely. ESS has a plan to be operated in the ship soon. In that case, additional devices are needed to connect ESS with cooling system of the vessel. So the development of addition device is needed and being studied.

Effect of Changing the Intake Air Temperature in a Marine Diesel Engine on the Characteristics of Exhaust Gas Emission (선박 디젤기관의 배기배출물 특성이 흡기 온도변화에 미치는 영향)

  • Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.788-794
    • /
    • 2019
  • Recently, global climate change caused by greenhouse gases has emerged as a significant air-environmental problem. Technical innovation in response to this phenomenon is ongoing, with an emphasis on the environmental impacts of unusually high temperatures and unexpected heavy rainfall. In this study, we investigated the effects of temperature change on air pollution for a concomitant rapid temperature increase. The test conditions include loading from 0 % to 100 % at 1400 rpm, 1600 rpm, and 1800 rpm for a change in the intake air temperature of a marine diesel engine from 20 ℃ to 50 ℃. The experimental results revealed that CO and HC decreased slightly, whereas the brake specific fuel consumption, NOx, and PM increased slightly when the intake air temperature changed. In addition, it was determined that the combustion temperature did not change significantly.

Countermeasures for reduction for CO2 emission from training ship (운항실습선에 적용한 CO2 배출량 저감대책)

  • Lee, Sang-Deuk;Koh, Dae-Kwon;Jung, Suk-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.981-986
    • /
    • 2015
  • As the seriousness of global environment pollution is gaining increasing public attention, research into greenhouse gas emissions of ships is being carried out globally. At a domestic level, however, in a number of significant fields such research has not been conducted to date. This study examined countermeasures for the reduction of $CO_2$ emission in the fields of electronic control engines, trim optimization, propeller polishing, hull cleaning, and anti-fouling paint using an actual sea-going vessel. Selected countermeasures were applied during sea trials of the ship and the effect of specific fuel oil consumption analyzed. It was found that each countermeasure resulted in a decrease of fuel consumption of 1~5%. The energy efficiency operational indicator (EEOI) was calculated and found to also be improved by 1~5%. Further research into the EEOI of domestic shipping is planned to enhance conformance with international environmental regulations and improve global competitiveness.

Strategies for Increasing Biomass Energy Utilization in Rural Areas - Focusing on heating for greenhouse cultivation - (농촌지역 바이오매스 에너지 보급 활성화 전략 - 시설재배 난방을 중심으로 -)

  • Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.9-20
    • /
    • 2015
  • The demand of renewable energy is expected to grow in the long run in spite of current stable lower oil prices. Energy consumption for heating in horticulture greenhouse is large and affects the profits of the farms. This study analyzed the availability of biomass in rural area and proposed the strategies for utilizing the biomass for greenhouse heating. Data reveal the annual average fuel consumption in greenhouses is about 78 TOE/ha. Considering biomass resource in rural areas, agricultural residues are not sufficient to meet the biomass demand from greenhouses. Therefore it is recommended to secure further biomass including wild herbaceous biomass and woody biomass from forest. Based on the conditions of biomass gasification equipment investment and fuel prices, maximum allowable price of biomass turned out about 100,000 KRW/t to be competitive to kerosine. Biomass supply chain should be established for facilitating biomass trading between biomass consumers and biomass producers such as farmers who provide crop residues. An online trading system is an example of the system where consumers who utilize biomass make payments to suppliers and get the information about the biomass. Intermediate collection storages are required to store biomass from distributed sources. Operation of biomass heating systems in demonstration greenhouses is necessary to get information to refine and further develop commercial biomass heating systems. Relatively large greenhouses are desirable to have biomass heating systems for economic viability. The location of the greenhouse farms should be selected within the area where enough biomass resources are available for feeding the biomass facility.

Biomass Energy in the USA: A Literature Review (III) - Bioethanol production from Biomass and Feedstock Supply - (미국 에너지 시장에 공급되는 바이오에너지에 관한 연구 (III) - 바이오매스를 이용한 에탄올 생산과 원료공급에 대하여 -)

  • Kim, Yeong-Suk;Gorman, Thomas
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This study was reviewed on the bioethanol production from biomass resources and feedstock supply in America. U.S. Department of Energy (USDE) and the u.s. Department of Agriculture USDA) are both strongly committed to expand the role of biomass as an energy source. They support biomass fuels and products as a way to reduce the need for oil and gas imports, to strengthen the nation's energy security and environmental quality. And it was envisioned a 20 percent replacement of the current U.S.transportation fuel consumption in 2030. Also it was reviewed policies to encourage the expanding of Bio-based fuel use to replace gasoline, such as Clean Air Act, Federal Clean Fuel Program and American Jobs Creation Act. In feedstock supply it was assumed forest biomass will be supplied in 368 million dry tons yearly and the agriculture derived biomass adopted by new technologies and land use change will be supplied in 998 million dry tons, including highly 818 million dry tons of lignocellulosic biomass such as perenial crops (hybrid trees, grasses) corn stover, other crop residues. This amount is 5 times to the amount from based current agricultural technology and crop land.

Development of Transportation Bio-energy and Its Future (수송용 바이오에너지 개발과 미래)

  • Chung, Jay-H.;Kwon, Gi-Seok;Jang, Han-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Negative environmental consequences of fossil fuels and the concerns about their soaring prices have spurred the search for alternative energy sources. While other alternative energies-like solar, wind, geothermal, hydroelectric, and tidal-offer viable options for electricity generation, around 40% of total energy consumption requires liquid fuels like gasoline or diesel fuel. This is where bio-energy/biofuels is especially attractive, where they can serve as a practical alternative to oil. The production of liquid biofuels for transportation will depend upon a stable supply of large amount of inexpensive cellulosic biomass obtained on a sustainable basis. This paper reviewed development status of transportation bio-energy for vehicles, technical barriers to the production of cellulosic ethanol, and the global future of bio-diesel and ethanol production.

OPF considering CO2 emission constraints and the emission trading mechanism (CO2 배출제약 조건과 배출권 거래제를 고려한 OPF)

  • Kim, Yang-Il;Han, Seok-Man;Chung, Koo-Hyung;Park, Kyung-Han;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.343-344
    • /
    • 2006
  • Consumption of fossil fuel has been increasing steadily, and it has seriously affected environment. Due to this situation, UN establish ed UNFCC (United rations Framework Convention on Climate Change), and since Feb. 2005, Kyoto Protocol has come into effect for UNFCC obligation. In Korean power system, coal and oil thermal generation emitting large CO2 form about 46% of total generation. Moreover since electricity dem and has been increasing continuously, various alternatives should be designed to comply with Kyoto Protocol. In this paper, we analyze changes of each GENCO's generation pattern and resource planning under CO2 emission constraints. For this analysis, we incorporate CO2 emission constraints and the emission trading mechanism into the conventional OPF model.

  • PDF