• 제목/요약/키워드: fuel mixing

검색결과 784건 처리시간 0.027초

Study on the mixing performance of mixing vane grids and mixing coefficient by CFD and subchannel analysis code in a 5×5 rod bundle

  • Bin Han ;Xiaoliang Zhu;Bao-Wen Yang;Aiguo Liu;Yanyan Xi ;Lei Liu ;Shenghui Liu;Junlin Huang
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3775-3786
    • /
    • 2023
  • Mixing Vane Grid (MVG) is one of the most important structures in fuel assembly due to its high performance in mixing the coolant and ultimately increasing Critical Heat Flux (CHF), which avoids the temperature rising suddenly of fuel rods. To evaluate the mixing performance of the MVG, a Total Diffusion Coefficient (TDC) mixing coefficient is defined in the subchannel analysis code. Conventionally, the TDC of the spacer grid is obtained from the combination of experiments and subchannel analysis. However, the processing of obtaining and determine a reasonable TDC is much challenging, it is affected by boundary conditions and MVG geometries. In is difficult to perform all the large and costing rod bundle tests. In this paper, the CFD method was applied in TDC analysis. A typical 5 × 5 MVG was simulated and validated to estimate the mixing performance of the MVG. The subchannel code was used to calculate the TDC. Firstly, the CFD method was validated from the aspect of pressure drop and lateral temperature distribution in the subchannels. Then the effect of boundary conditions including the inlet temperature, inlet velocities, heat flux ratio between hot and cold rods and the arrangement of hot and cold rods on MVG mixing and TDC were studied. The geometric effects on mixing are also carried out in this paper. The effect of vane pattern on mixing was investigated to determine which one is the best to represent the grid's mixing performance.

고체분말/액체연료의 과도혼합 농도 분포 측정 (Measurements of Transient Mixing Concentrations between Solid Powder and Liquid Fuel)

  • 도덕희;염주호;조경래;민성기;김명호;유경원;유남현
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.678-687
    • /
    • 2012
  • Concentration fields of solid powder in a liquid fuel were quantitatively measured by a visualization technique. The measurement system consists of a camcoder and three LCD monitors. The solid powder (glass powder) were filled in a head tank which was installed over a main mixing tank ($D{\times}H$, $310{\times}370mm$). The main mixing tank was filled with JetA1 fuel oil. With a sudden opening of the upper tank by pressurized nitrogen gas with 1.9 bar, the solid powder were poured into the JetA1 oil. An impeller type agitator was being rotated in the mixing with 700 rpm for the enhancements of mixing. Uniform visualization for the mixing flow field was made by the light from the three LCD monitors, and the visualized images were captured by the camcoder. The color images captured by the camcoder The color information of the captured images was decoded into three principle colors R, G, and B to get quantitattive relations between the concentrations of the solid powder and the colors. To get better fitting for the strong non-linearity between the concentration and the color, a neural network which has strong fitting performances was used. Analyses on the transient mixing of the solid powders were quantitatively made.

연료탱크내 액체연료와 고체입자의 혼합 수치해석 연구 (A Numerical Study on Mixing of Liquid Fuel and Solid Particles in a Fuel Tank)

  • 김명호;유경원;민성기;황기영
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.745-749
    • /
    • 2011
  • 혼합용 임펠러를 장착한 연료탱크의 액체연료와 미세 고체입자의 부유, 혼합 현상을 분석하고자 2차원 혼합 유동 수치해석을 수행하였다. 다상 유동해석은 Eulerian Grandular Multiphase 기법을 사용하였고, 해석기법을 12vol% 고체 혼합 조건 실험의 축방향 고체 농도 분포와 비교하여 확인하였다. 해석용 연료탱크는 10.5vol% 고체입자를 액체연료와 혼합하는 것으로 회전수 700rpm 조건에서 4가지 경우의 임펠러 위치와 유속 조건으로 해석을 수행하였다. 각 경우에 대한 Quality of Suspension 결과를 비교하여 적합한 임펠러 위치와 속도방향을 확인하였다.

  • PDF

다양한 연료의 혼합에 따른 대향류 확산화염에서의 PAH 및 매연생성 특성 (Effect of Fuel Mixing on PAH and Soot Formation in Counterflow Diffusion Flames)

  • 윤승석;이상민;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.137-142
    • /
    • 2003
  • In order to investigate the effect of fuel mixing on PAH and soot formation, four species of methane, ethane, propane and propene have been mixed in counterlfow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that the mixing of ethane (or propane) in ethylene diffusion flame produces more PAHs and soot than those of propene, even though the propene diffusion flame produces more PAHs and soot than that of propane and ethane. Considering that propene directly dehydrogenates to propargyl radical, this behavior implied that the enhancement of PAH and soot formation by the fuel mixing of ethylene and ethane (or propane) cannot be explained by propargyl radical directly dehydrogenated from ethane (or propane).

  • PDF

바이오 디젤 연료의 연소특성 (Combustion Characteristics of Biodiesel Fuel)

  • 윤승현;박성욱;권상일;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.146-151
    • /
    • 2004
  • The characteristics of combustion and emission of biodiesel fuel were investigated in a single cylinder DI diesel engine equipped with a common rail injection system. For investigating the effect of bio diesels, the experiments were conducted at various mixing ratio and engine operation conditions. Experimental results show that combustion pressure increased with the increase of mixing ratio and injection pressure. The HC and CO emissions are decreased and NOx emission is increased as the mixing ratio of biodiesels increases at 100MPa injection pressure. However the results of the emissions are shown the contrary to the results at 50MPa of injection pressure due to larger droplets of biodiesel sprays.

  • PDF

음파가진에 의한 수소 확산 화염의 NOx 배출저감 및 혼합증진 (NOx Emission Reduction and Mixing Enhancement of Turbulent Hydrogen Diffusion Flame by An Acoustic Excitation)

  • 한정재;김문기;윤상욱;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.305-313
    • /
    • 2005
  • Measurements of flame length, width and NOx emissions have been conducted to investigate the effect of an acoustic excitation on flame structure in turbulent hydrogen diffusion flames with coaxial air. The resonance frequency of oscillations was varied between 259 ,514 and 728 Hz with power rate of 0.405 and 2.88w. When these frequencies imposed to hydrogen flames, dramatic reduction of flame length and NOx emission was achieved. And acetone planar laser-induced fluorescence technique was used to measure a concentration of the near field of driven axisymmetric jet. The air-fuel stoichiometric line was plotted to investigate the mixing layer and development of air entrainment to fuel jet. Consequently, acoustic excitation on flame could enhance the air-fuel mixing resulting in abatement of NOx emission quantitatively.

  • PDF

에탄올 혼합율이 엔진성능에 미치는 영향 (The Effect of Ethanol Mixing Rate on Engine Performance)

  • 박권하;박홍일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.663-669
    • /
    • 2008
  • A rapid growth of automobile industry has become a major cause for the environmental pollution of big cities, which has driven the emission regulation into extreme. The study of alternative fuel is one of the many researches for improving car emissions. In this study, the effect of an ethanol mixing rate on the engine performance of exhaust emissions, fuel consumption and a maximum torque is assessed for a gasoline engine without any retrofit. The result shows that maximum torque is not reduced in the range of ethanol mixing rate of 10 to 15%. CO and NOx is reduced with the increase of ethanol mixing rate and the fuel consumption remains in similar level.

다양한 연료의 혼합에 따른 대향류 확산화염에서의 PAH 및 매연생성 특성 (Effect of Fuel Mixing on PAH and Soot Formation in Counterflow Diffusion Flames)

  • 윤승석;이상민;정석호
    • 한국연소학회지
    • /
    • 제8권3호
    • /
    • pp.8-14
    • /
    • 2003
  • In order to investigate the effect of fuel mixing on PAH and soot formation, four species of methane, ethane, propane and propene have been mixed in counterlfow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that the mixing of ethane (or propane) in ethylene diffusion flame produces more PAHs and soot than those of propene. Considering that propene directly dehydrogenates to propargyl radical, this behavior implied that the enhancement of PAH and soot formation by the fuel mixing of ethylene and ethane (or propane) cannot be explained solely by propargyl radical directly dehydrogenated from ethane (or propane). Thus, combination reactions between C1 and C2-species for the formation of propargyl was suggested to identify the synergistic effect occurring in the flames of ethylene and propane (or ethane) mixtures.

  • PDF

핵연료집합체 지지격자의 혼합날개 형상이 임계열유속에 미치는 영향 (Effect of Mixing Vane Shapes of Spacer Grids in Nuclear Fuel Assembly on Critical Heat Flux)

  • 신창환;추연준;문상기;천세영;전태현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2396-2401
    • /
    • 2007
  • Freon CHF experiments are carried out to investigate the CHF enhancements by mixing vane shapes of spacer grids in nuclear fuel assembly. The experiments were performed for a wide range mass flux, 50$\sim}$3000 kg/$m^2s$. Three kinds of spacer grids in 5${\times}$5 rod bundles are tested: no mixing vane grids, hybrid mixing vane grids, and split mixing vane grids. The CHF performances are compared along with the data belong to the PWR operating conditions based on a water equivalence through a fluid-to-fluid modeling method. The average of the data in this range is 16.4% for 37 data of hybrid vane grid and 12.5% for 24 data of split vane. In the lower mass flux, however, the split vane grid shows slightly higher performance than the hybrid vane grid.

  • PDF

모형 가스터빈 연소기에서의 스월수와 혼합길이에 따른 화염구조와 NOx배출에 관한 실험적 연구 (The Study on Flame Structure and NOx Emissions by Swirl Numbers and Fuel-Air Mixing Length in a Dump Combustor Gas Turbine)

  • 최도욱;김규보;전충환;송주헌;장영준
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.849-857
    • /
    • 2009
  • The experimental study was performed to investigate the effects of partial premixing, varying the equivalence ratio, mixing degree, swirl intensity, mixing length on the characteristics of flame structure and NOx emission. Experiments were conducted in a dump combustor at 1 bar using methane as fuel. Inlet air temperature was 570K. OH chemiluminescence images were acquired with an ICCD camera. As a result of the experimental investigation of characteristics of flame and NOx emission in partial premixed combustor, we can conclude the results as below. With the increase of swirl number, The flame length decreases and the flame width increases and it helps flame stabilization. It means that lean flammability limit is extended. With the increase of mixing of fuel-air length ratio, Flame goes to be stabilized and NOx emission and $OH^{\ast}$ intensity decrease. Through the comparison of preceding results, It is possible that the exhausted NOx emission from a gas turbine combustor will be able to predict through the $OH^{\ast}$ intensity.