• Title/Summary/Keyword: fuel injection system

Search Result 749, Processing Time 0.024 seconds

A Study on the Performance of EFI Engine Used Ultrasonic Energy Adding Fuel system(II) -Attaching Importance to the Fuel Spray- (초음파연료공급창치를 이용한 EFI기관의 성능에 관한 연구(II) -연료 분사를 중심으로-)

  • 윤면근;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.80-86
    • /
    • 1997
  • This experiment was undertaken to investigate spray characteristics of the conventional injection system and the ultrasonic energy added injection system. Sauter mean diameter was measured under the variation of injection pressure and the spray distance. To measure the droplet size, we used the Malvern system 2600C. The spray angle and mass distribution were analyzed to the CCD camera and the patternater. After experiment, it was found that the ultrasonic energy added injection system had smaller Sauter mean diameter of droplet, wider mass distribution and wider spray angle than the conventional injection system had.

  • PDF

Durability Properties of Liquid Phase LPG Injection System with Various Qualities of LPG Fuels (LPG연료품질에 따른 LPG액상분사방식의 내구특성연구)

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.73-78
    • /
    • 2004
  • The liquid phase LPG injection (LPLi) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system. To investigate the durability property of core part of injector in liquid phase LPG injection system, leakage test, SEM test of injectors and analysis of unvaporized fuel components with various LPG fuel qualities were tested. The experimental results showed that no serious problem in durability test using favorable LPG fuel quality, while high leakage amount due to the large scratches in the needle and nozzle of the injector were found using LPG fuel with highly containing olefin components, especially butadiene species.

The Characteristics on the Engine Performance for Variation of Fuel Injection Timing in DI Diesel Engine Using Biodiesel(II) (바이오디젤 사용과 연료분사시기 변화에 따른 DI 디젤기관 성능 특성(II))

  • Jang, Se-Ho
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.25-32
    • /
    • 2013
  • Biodiesel is technically competitive with it and offers technical advantages over conventional petroleum diesel fuel. Biodiesel is an environment friendly alternative liquid fuel that can be used in any diesel engine without modification. In this study, (dP/dCA)max and heat release, emission characteristics with different fuel injection timings are compared between diesel fuel and biodiesel in the D.I. diesel engine with T/C. The engine was operated at five different fuel injection timings from BTDC 6deg to 14deg at 2deg intervals and with four different loads at engine speed of 1800rpm. The experiments in a test engine showed that ranges between low and high of (dP/dCA)max got narrower, as the engine load increased, BD blend rate increased, and fuel injection timing was delayed. Cumulative heat release increased with the advanced fuel injection timing. NOX emissions decreased with the delays of fuel injection timing.

Effect of Fuel Injection Timing on the Performance Characteristics in an Si Engine (가솔린기관의 연료분사 시기가 기관성능에 미치는 영향)

  • 조규상;정연종;김원배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.144-152
    • /
    • 1996
  • In the sequential MPI system with one injection for each cycle, engine performance is influenced by the mixture conditions. It can be said that engine performance is improved by being better identical mixture formation conditions for all cylinders. As the fuel injection timing to the intake port effects on the mixture formation conditions and the engine performance, injection timing must be better adjusted to engine requirements. Engine behavior was clearly different depending on the injection time during intake storke. Therefore it was studied that injection timing of fuel effects on the engine performance I. e. combustion stability, COV(imep), A/F excursion, CO,HC emission concentration and fuel consumption. It was found that late intake-synchronous injection was deteriorated the combustion characteristics and performance characteristics, while early intake-synchronous infection resulted in favorable engine behavior.

  • PDF

Hydraulic Modal Analysis of High-Pressure Common-rail Fuel Injection System for Passenger Vehicle (승용 CR 연료분사시스템에 대한 유압 Modal 분석)

  • Sung, Gisu;Kim, Sangmyeong;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • Recently, R&D demand for environmental friendly vehicle has rapidly increased due to its global environmental issues such as global warming, energy and economic crisis. Under this situation, the most realistic alternative way for environmental friendly vehicle is a clean diesel vehicle. The common-rail fuel injection system, as key technology of clean diesel vehicle, consists of a high pressure pump, common-rail, high pressure fuel line and electronic control injector. In common-rail high-pressure fuel injection system, high pressure wave of injection system and geometry of injector elements have a major effects on high-pressure fuel spray. Therefore, in this study, the numerical model was developed for analysis about the common-rail fuel pressure pulsation by using AMESim code. We could secure stability of common-rail high-pressure fuel injection system through optimal design of fuel line.

Simulation of High Pressure Common-rail Fuel Injection System (커먼레일 고압분사 시스템 수치 시뮬레이션)

  • 김홍열;구자예;나형규;김창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.162-173
    • /
    • 1998
  • The high pressure common rail injection system offers a high potential for improving emmisions and performance characteristics in large direct diesel engines. High pressures in the common rail with electronic control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine rpm and load conditions. In this study, high pressure supply pump, common rail, pipes, solenoid and control chamber, and nozzle were modeled in order to predict needle lift, rate of injection, and total injected fuel quantity. When the common rail pressure is raised up to 13.0 ㎫ and the targer injection duration is 1.0ms, the pressure drop in common rail is about 5.0㎫. The angle of effective pressurization is necessary to be optimized for the minimum pump drive torque and high pressure in common rail depending on the operating conditions. The characteristics of injection were also greatly influenced by the pressures in common rail, the areas of the inlet and exit orifice of the control chamber.

  • PDF

Cycle Simulation for the Performance Prediction of a High Pressure Unit Injection System of a Diesel Engine (디젤엔진용 고압분사 유닛인젝터의 성능예측을 위한 사이클 시뮬레이션)

  • 김철호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.63-74
    • /
    • 2001
  • In this study, a cycle simulation program of a Unit-Injection(UI) system was developed to estimate the injection performance of newly designed injection system. A fundamental theory of the simulation program is based on the conservation law of mass. Loss of fuel mass in the system due to leakage, compressibility effect of the liquid fuel and friction loss in the control volume was considered in the algorithm f the program. For the evaluation of the simulation program developed, the experimental result which was offered by the Technical Research Center of Doowon Precision Industry Co. was incorporated. Two main parameters; the maximum pressure in the plunger chamber and total fuel mass(kg) injected into the engine cylinder per cycle, were measured and compared with the simulation results. It was found that the maximum error rate of the simulation result to the experimental output was less than 3% in the rated rotational speed (rpm) range of the plunger cam.

  • PDF

The Effect of Split Injections on the Stability of Idle Combustion and Emissions Characteristic in a Gasoline Direct Injection Engine (GDI 엔진의 분할 분사가 아이들 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, H.G.
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.221-226
    • /
    • 2014
  • This paper described the effect of split injections on the stability of combustion and emission characteristics in a direct injection gasoline engine at various operating conditions. In order to investigate the influence of direct injection gasoline engine, the fuel injection timing was varied direct fuel injection at various fuel pressure. The experimental apparatus consisted of GDI engine with 4 cylinder, EC dynamometer, injection control system, and exhaust emissions analyzer. The emission and combustion characteristics were analyzed for the fuel injection timing and fuel injection pressure strategies. It is revealed that CO and HC emissions are dramatically decreased at advanced injection timing. Also, engine performance is increased at increase fuel injection pressure.

A Study of GDI+MPI Engine Operation Strategy Focusing on Fuel Economy and Full Load Performance using DOE (실험계획법에 의한 가솔린 GDI+MPI 엔진의 연비 및 성능향상 관점에서의 운전영역별 연료분사 전략에 관한 연구)

  • Kim, Dowan;Lee, Sunghwan;Lim, Jongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.42-49
    • /
    • 2014
  • The gasoline direct injection (GDI) system is considerably spreading in automotive market due to its advantages. Nevertheless, since GDI system emit higher particle matter (PM) due to its combustion characteristics, it is difficult to meet strengthened emission regulation in near future. For this reason, a combined GDI with MPI system, so-called, dual injection (DUI) system is being investigated as a supplemental measure for the GDI system. This paper focused on power and fuel consumption effect by injection mode strategy of DUI system in part load and idle engine operating condition. In this study, port fuel injectors are installed on 2.4 liters GDI production engine in order to realize DUI system. And, at each injection mode, DOE (design of experiment) method is used to optimize engine control parameters such as dual injection ratio, start of injection timing, end of injection timing, CAM position and so on. As a consequence, DUI mode shows slightly better or equivalent fuel efficiency compared to conventional GDI engine on 9 points fuel economy mode as well as MPI mode shows less fuel consumption than GDI mode during idle operation. Furthermore, DUI system shows improvement potential of maximum 2.0% fuel consumption and 1.1% performance compared to GDI system in WOT operating condition.

Design and Development of an Electronic Control Unit of the Automobile Engine for Optimal Fuel Injection and Spark Timing Control (최적의 연료분사와 점화시기 제어를 위한 자동차 엔진용 전자제어장치 설계 및 개발)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.644-654
    • /
    • 2001
  • In this paper, an electronic control unit of the automobile engine for optimal fuel injection an spark timing control has been designed and developed. This system includes hardware and software for a precise control of fuel injection and ignition timing. Especially, the crank angle sensor provides two separate signals: One is the position signal (POS) which indicates 180 degree pulses per revolution, and the other is the reference signal (REF) that represents each cylinder individually. Consequently, the developed engine control system has been able to control fuel injection and ignition timing more quickly and accurately. Through the experiment, it has been found that the fuel injection duration and the position of MBT have been influenced by coolant temperature, air flow rate and engine speed.

  • PDF