• Title/Summary/Keyword: fuel injection pump

Search Result 96, Processing Time 0.024 seconds

A Study on the High Pressure Pump Simulation Model of a Diesel Injection System (디젤 분사시스템의 고압펌프 시뮬레이션 모델에 대한 연구)

  • Kim, Joongbae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.102-109
    • /
    • 2017
  • The high pressure pump of a diesel injection system compresses the fuel supplied at low pressure into high pressure fuel and maintains the fuel of the common rail at the required pressure level according to the engine operating conditions. The high pressure pump is required to operate normally in order to compress the fuel to a high pressure of 2000 bar during the entire lifetime of the vehicle. Consequently, a suitable design technique, material durability and high precision machining are required. In this study, the high pressure pump simulation model of a 1-plunger radial piston pump is modelled by using the AMESim code. The main simulation parameters are the displacement, flow rate and pressure characteristics of the inlet and outlet valves, cam torque characteristics, and operating characteristics of the fuel metering valve and overflow valve. In addition, the operating characteristics of the pump are simulated according to the parameter changes of the hole diameter and the spring initial force of the inlet valve. The simulation results show that the operation of the developed pump model is logically valid. This paper also proposes a simulation model that can be used for current pump design changes and new pump designs.

A Study on the Improvement of Lubrication Characteristics for Fuel Pump in LPG Engine (자동차용 LPG 연료펌프의 윤활성 개선에 관한 연구)

  • Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong;Park, Cheol-Woong
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPG (Liquefied Petroleum Gas) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a high vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to directly apply the conventional gasoline or diesel fuel pump. Self acting lubricated groove design or coating can be used in high-speed and high precision spindle system like a roller-vane type fuel pump, because of its advantages such as low frictional loss, low heat generation, averaging effect leading better running accuracy and simplicity in manufacturing. Those design method can also affect the atomization of fuel from the injector and the formation of fuel film on the intake manifold. In this study, experiments are carried out to get performance characteristics of initial and steady state operation, The characteristics of vane type fuel pump were investigated to access the applicability on LPLi engine.

Measurements of Spray Characteristics According to Nozzle Property in Dual Fuel Engine with a Mechanical Fuel Pump (기계식 연료펌프를 사용하는 혼소엔진에서 노즐특성에 따른 경유 분사특성 측정)

  • Cho, S.H.;Yoo, S.H.;Lee, B.H.;Kim, D.H.;Lee, D.Y.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2012
  • The characteristics of spray behavior and injected amount were studied with two types of nozzles for using in a compression ignition engine with dual fuel technology for construction machines. A penetration length of spray tends to shorten due to a decrease of injected amount of a diesel fuel with dual fuel engine application. In order to ignite the gaseous fuel premixed with air during intake process, a diesel fuel, which was compression ignited, needs to penetrate somehow similar depth compared with the case of a diesel fuel-only-injection. In this work, a nozzle with reduced hole diameter and increased number of holes was tested and demonstrated that, compared to diesel 100% case, its penetration lengths are comparable to 74% and 79%, respectively, of those of 100% and 50% supply of a diesel fuel with the baseline nozzle that has four holes and 30.4% increased diameter. This will presumably enhancement the combustion in a dual fuel engine. A design suggestion was also made in this work to achieve similar penetration length of spray with diesel 100% case to prevent combustion from being deteriorated in a dual fuel engine.

Performance Characteristics with Various Fuel Composition and Temperature for an External Type Fuel Pump in LPLi System (LPLi 시스템에서 외장형 펌프의 연료조성 및 온도에 따른 성능특성 연구)

  • Nam, Deok-Woo;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.566-575
    • /
    • 2011
  • Since LPG (Liquefied petroleum gas) fuel supply system has an advantage of low emission characteristics, many studies have been conducted. In spite of the advantage of LPG supply system, a higher vapor pressure and lower viscosity than diesel or gasoline fuel may cause unstable running of fuel pump by the deterioration in lubrication performance and chemical reaction with rubber parts than that of diesel and gasoline fuel. Therefore its physical properties can cause the deterioration of durability. In this research, we developed an external type LPG pump which has the advantage of the price competitiveness and the convenient maintenance for LPLi system. The experiments were carried out in order to assess characteristics of the external type fuel pump at different fuel composition and temperature. As a result, there aren't any differences between internal and external type pump performance. It is observed that the same level of efficiency was maintained for both pumps as flow rate was increased with higher fuel temperature and more contents of propane in the fuel. And the pressure difference in LPLi system is maintained at constant with the various fuel compositions and temperatures due to their own characteristics of fuel supply system.

A Study on the Injection Characteristics of Fuel Supply System of Diesel Engine (디젤엔진 연료계통의 분사특성에 관한 연구)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.49-62
    • /
    • 1993
  • It has been a principle research topic on the diesel engine development to increase the efficiency and the performance of engine to satisfy the user's needs for high reliability and durability. However, recently with the worldwide concerns at the global climate change and environmental protection, the main target in the diesel engine research has been changed to solve the exhaust emission problem in order to satisfy the strict emission regulations. To reduce the pollutant for the diesel engine, the researchs on the combustion chamber is the most important and has to be performed first of all. The diesel fuel injection system plays major role to air-fuel mixing process and influences engine output, themal efficiency, reliability, noise, and emissions. The experimental studies were conducted by varying the various parametric conditions and the results were campared with the computation and calculated results by using the fuel injection simulation program developed during previous research. From the experiments, the matching technique of a fuel injection pump and nozzle was conducted to understand under the various parametric conditions. Also, the relations between needle lift and wave propagation characteristics in high pressure pipe were examined. The basic design data from the experimentations and computation works would be applied to actual design works of diesel fuel injection system.

  • PDF

An Optimization of the Combustion Parameters for Reducing Exhaust Emissions in a Direct Injection Diesel Engine (직접분사식 디젤기관 배기배출물 저감을 위한 연소인자의 최적화)

  • 주봉철;노병준;김규철;이삼구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.78-85
    • /
    • 2000
  • This study is to develop the diesel engine which has 6 cylinder natural aspiration direct injection type of 7.4$\ell$ with high performance, low emissions and low fuel consumption Finally the developed engine meets Korean `98 exhaust emission regulation for the city bus of heavy duty diesel engine by optimizing the various combustion parameters affecting performance and exhaust emissions. Combustion parameters are the swirl ratio of intake ports, the profile of injection pump`s cam affecting injection pressure, the design features of piston bowl of injection pump`s cam affecting injection pressure, the design features of piston bowl of combustion chamber and injector`s hole size. Through experimental analysis, various combustion parameters are optimized and the results are as follows; the swirl ratio is 2.20, the profile of injection pump`s cam is concave and re-entrant ratio, inner diameter of piston bowl and hole diameter of injector is 0.88,$\psi$64.0mm and $\psi$0.25mm respectively.

  • PDF

Hydraulic Modal Analysis of High-Pressure Common-rail Fuel Injection System for Passenger Vehicle (승용 CR 연료분사시스템에 대한 유압 Modal 분석)

  • Sung, Gisu;Kim, Sangmyeong;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • Recently, R&D demand for environmental friendly vehicle has rapidly increased due to its global environmental issues such as global warming, energy and economic crisis. Under this situation, the most realistic alternative way for environmental friendly vehicle is a clean diesel vehicle. The common-rail fuel injection system, as key technology of clean diesel vehicle, consists of a high pressure pump, common-rail, high pressure fuel line and electronic control injector. In common-rail high-pressure fuel injection system, high pressure wave of injection system and geometry of injector elements have a major effects on high-pressure fuel spray. Therefore, in this study, the numerical model was developed for analysis about the common-rail fuel pressure pulsation by using AMESim code. We could secure stability of common-rail high-pressure fuel injection system through optimal design of fuel line.

Solenoid Valve Control for Diesel Engines fuel Pump (디젤엔진 연료펌프의 솔레노이드 밸드 PWM 제어)

  • 신우석;이철원;진상호;권순익;강남희;김형동;이흥배;이재기;최규하
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.200-203
    • /
    • 1997
  • This paper describes an study electric injection system for diesel engines. It is needed effective fuel injection which controls the solenoid valve of fuel pump. To solve this, this paper proposes DCC-PWM method which can realize fast reply and low holding current for solenoid valve on/off. For the proposed design method, simulation tools of ACSL are used to analyze the system. And the single-chip microcomputer is used to reduce the size of controller and to improve flexibility. And the system's validity can be verified through the experimental results.

  • PDF

Simulation on the Characteristics of PLN Diesel Injection System by Cam Profile (연료캠 형상에 따른 PLN 디젤 분사계의 분사특성에 관한 시뮬레이션)

  • Lee, J.H.;Wang, W.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.42-51
    • /
    • 1997
  • In this study, in order to investigate the influence of cam profile on the injection rate, the characteristics of injection in PLN (pump - line - nozzle) diesel injection system were simulated. Six types of the profile of fuel cam were used for simulation. The maximum injection pressure and maximum injection rate of initial and end phase were analyzed to demonstrate the characteristics of injection. The mathematical model of the injection system and the computation results were verified by experimental results. Simulation results showed that the maximum injection pressure, maximum injection rate, injection quantity and pressure drop in the end phase were proportional to the velocity of fuel cam during the effective stroke.

  • PDF

simulation of the fuel-injection system in a diesel engine (디이젤 기관 연료분사계의 시뮬레이션)

  • 채재우;오신규
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.2
    • /
    • pp.45-54
    • /
    • 1985
  • Recently, the problem of exhaust gas pollution is increasingly being aggravated by the active use of the Diesel engine. For the fuel-injection system which affects the composition of exhaust gas from the Bosch type single-hole nozzle in the Diesel engine, a mathematical model was set up to study pressure variations in the high pressure pipe, the injection rate, and the needle lift. The fundamental equations of the mathematical model have been solved by the Newton Raphson Method applying the Finite Diffrence Method. The effective stroke of the injection pump plunger due to a change in engine rpm was calculated by the measurement of Control Rack, Pinion, and Plunger sizes and by the use of Characteristic Curve of Governor. The computed results for the pressure variations in the high pressure pipe and needle lift at 800 rpm and 1000 rpm are in good agreement with experimental ones in general. By a developed program, the effects of other various parameters will by calculated for the performance of the fuel-injection system.

  • PDF