• Title/Summary/Keyword: fuel guide tube

Search Result 16, Processing Time 0.024 seconds

Buckling Analysis of Guide Tube in the Spent Fuel Skeleton (핵연료 집합 구조체의 가이드튜브에 대한 죄굴응력 해석)

  • 김영환;윤지섭;정재후;홍동희;송상호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.413-416
    • /
    • 2000
  • The spent fuel skeleton is processed in the cutting processing after compacting. If the cutting length is processed in the same interval length. The spent fuel skeleton is stayed on the connection of bottom nozzle and guide tube. In the case, because the compressive stress is loaded along the length, the guide tube is generated the buckling stress and the deforming. But the deformed guide tube interrupted the guide tube inserted through compressive room. therefore, it is experimented for the optimum buckling stress and the preventing of guide deformed. This paper is predicted the all over buckling stress of the spent fuel skeleton by using experiment. The guide of Spent fuel skeleton have buckling characteristics of the medium column. The experiment and analysis is conducted by the comparing among the equation of Euler, Johnson and Engresser. The fittest one of method is Engresser equation.

  • PDF

Load Concentration Factor Analysis of Fuel Assembly Guide Thimble (핵연료집합체 안내관의 하중집중계수 해석)

  • Lee Young-Shin;Jeon Sang-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.93-100
    • /
    • 2005
  • The top and bottom nozzles of PWR fuel assembly are connected by guide thimbles and an instrumentation tube that are connected with spacer grids. The fuel rods are inserted into the each cell of spacer grids. The loads acting on the fuel assembly are transmitted to the guide thimbles through the flow plate of top nozzle The axial loads applied to the fuel assembly are not equally distributed among the guide thimble due to the geometry of the top nozzle flow plate and spacer grid. In this study, the load concentration factors for the $17\times17$ fuel assembly were calculated. The analytical model fur the calculation of the load concentration factor of top nozzle flow plate was developed using ANSYS 5.6. The finite element analyses were performed using the model composed of top nozzle, guide thimble, and spacer grid. And, the analysis results were compared with the test results.

Spray Visualization of the Gas Turbine Vaporizer (가스터빈 기화기의 분무 가시화 연구)

  • Jo, Sungpil;Joo, Milee;Choi, Seongman;Rhee, Dongho
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.130-136
    • /
    • 2019
  • Spray visualization of a vaporizer fuel injection system of a micro turbo jet engine was experimentally studied. The fuel heating by combustion was simulated by the high pressure steam generator and combustor inlet air from the centrifugal compressor was simulated by compressed air stored in the high pressure air tank. Spray visualization was performed with single vaporizer, and then six vaporizers which are same number of micro turbojet engine were used. As a results, the spray characteristics of the vaporizer were understood with pressure difference of the combustor inlet air and the fuel supply pressure. Spray angles with three types of vaporizer configuration were measured. In the results, guide vane configuration has a wider spray angle than the straight tube and smooth curve tube with a swirler, so it is expected that the fuel will be effectively distributed inside the combustor flame tube.

Manufacturing Process Effect on Strength and Corrosion Properties of Zr Alloys for Fuel Guide Tube (핵연료 안내관용 지르코늄 합금의 강도 및 부식 성능에 미치는 제조공정 영향)

  • Kim, Hyun-Gil;Kim, Il-Hyun;Choi, Byung-Kwan;Park, Sang-Yoon;Park, Jeong-Yong;Jeong, Yong-Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.852-859
    • /
    • 2009
  • The manufacturing process of zirconium alloys is an import factor to increase their strength and corrosion resistance. In order to find an improved manufacturing process of zirconium alloys in both Zr-1Nb-1Sn-0.1Fe (Alloy-A) and Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr (HANA-4) for fuel guide tubes, sheet samples were prepared by applying two- and three-step processes that were controlled by an annealing and reduction condition. The mechanical strength and corrosion resistance of both alloys were increased by applying the twostep process rather than the three-step process. From a matrix analysis using TEM, the property improvement is related to the decrease of the precipitate mean diameter with an application of the two-step process. In a comparison of the strength and corrosion properties between Alloy-A and HANA-4, the performance of HANA-4 was feasible for application to fuel guide tubes.

Jet-Flow-Induced Vibration of Tube Arrays (제트유동에 의한 튜우브 집합체의 진동 연구)

  • Lee, Hae;Chang, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 1986
  • This paper presents a study on jet-flow-induced vibration, which has been one of the main causes of fuel damage in many pressurized water reactors. A systematic investigation was carried out experimently to identify the mechanism of jet-flow-induced vibration and to provide a design guide. Fluidelastic instability occurs when the jet velocity exceeds a critical value. The threshold of instability is given by V/f$_{n}$D=K.root.(D/h)(m$_{0}$.delta.$_{0}$/.sigma.D$^{2}$), where K is a stability constant. The effect of axial flow velocity and stand-off distance of a tube array on the stability of the array were investigated. A design guide is proposed.posed.

WASTE CLASSIFICATION OF 17×17 KOFA SPENT FUEL ASSEMBLY HARDWARE

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Jong-Won;Choi, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Metal waste generated from the pyroprocessing of 10 MtU of spent fuel was classified by comparing the specific activity of a relevant radionuclide with the limit value of the specific activity specified in the Korean acceptance criteria for a lowand intermediate-level waste repository. A Korean Optimized Fuel Assembly design with a 17${\times}$17 array, an initial enrichment of 4.5 weight-percent, discharge burn-up of 55 GWD/MtU, and a 10-year cooling time was considered. Initially, the mass and volume of each structural component of the assembly were calculated in detail, and a source term analysis was subsequently performed using ORIGEN-S for these components. An activation cross-section library generated by the KENO-VI/ORIGEN-S module was utilized for top-end and bottom-end pieces. As a result, an Inconel grid plate, a SUS plenum spring, a SUS guide tube subpart, SUS top-end and bottom-end pieces, and an Inconel top-end leaf spring were determined to be unacceptable for the Gyeongju low- and intermediate-level waste repository, as these waste products exceeded the acceptance criteria. In contrast, a Zircaloy grid plate and guide tube can be placed in the Gyeongju repository. Non-contaminated Zircaloy cladding occupying 76% of the metal waste was found to have a lower level of specific activity than the limit value. However, Zircaloy cladding contaminated by fission products and actinides during the decladding process of pyroprocessing was revealed to have 52 and 2 times higher specific activity levels than the limit values for alpha and $^{90}Sr$, respectively. Finally, it was found that 88.7% of the metal waste from the 17${\times}$17 Korean Optimized Fuel Assembly design should be disposed of in a deep geological repository. Therefore, it can be summarized that separation technology with a higher decontamination factor for transuranics and strontium should be developed for the efficient management of metal waste resulting from pyroprocessing.

Drop Time Evaluation for SMART Control Rod Assembly (스마트 제어봉집합체의 낙하시간 평가)

  • Kim, Kyoung-Rean;Jang, Ki-Jong;Park, Jin-Seok;Lee, Won-Jae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.25-28
    • /
    • 2011
  • The control rod assemblies do freely fall into the reactor core by the gravity from the control rod drive mechanism. In order to achieve a rapid shutdown and control the reactor power, it is required to insert control rod assemblies as soon as possible. In this paper, we evaluated the drop time and flow characteristics caused around guide tube for SMART(System-integrated modular advanced reactor) control rod assembly. Numerical analyses are carried out with FLUENT program of computational fluid dynamics. This study results show that the drop time of the control rod assembly in the operating condition of SMART is more 20 percent rapidly than the drop time of the room temperature and ambient atmosphere condition.

Fabrication of Ionization Chamber to Measure the Burnup of Spent Fuel (사용후핵연료 연소도 측정을 위한 이온 챔버 제작)

  • Park, Se-Hwan;Eom, Sung-Ho;Shin, Hee-Sung;Lim, Hye-In;Ha, Jang-Ho;Kim, Han-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.21-25
    • /
    • 2010
  • Burnup of spent fuel should be determined accurately for the safety control of spent fuel. Especially, it is necessary to measure the burnup profile along the nuclear fuel axis. In the present work, an ionization chamber was designed and fabricated to measure the gamma ray profile inside the guide tube of spent fuel. The ionization chamber was composed of three parts; induction part, gas-inlet part, and sensor part. The sensor part had two electrodes; cathode and anode. A guide electrode was considered in the ionization chamber design to make the ionization chamber to be inserted easily into the guide tube. Pure gas (argon and xenon) was inserted into the ionization chamber, and the leakage current and saturation curve were measured to determine the operation characteristics of the ionization chamber. The gamma ray radiation was also measured in relatively high dose environment. The gamma ray profile of the spent fuel will be measured with the ionization chamber.

APPLICATION OF A GENETIC ALGORITHM FOR THE OPTIMIZATION OF ENRICHMENT ZONING AND GADOLINIA FUEL (UO2/Gd2O3) ROD DESIGNS IN OPR1000s

  • Kwon, Tae-Je;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.273-282
    • /
    • 2012
  • A new effective methodology for optimizing the enrichment of low-enriched zones as well as gadolinia fuel ($UO_2/Gd_2O_3$) rod designs in PLUS7 fuel assemblies was developed to minimize the maximum peak power in the core and to maximize the cycle lifetime. An automated link code was developed to integrate the genetic algorithm (GA) and the core design code package of ALPHA/PHOENIX-P/ANC and to generate and evaluate the candidates to be optimized efficiently through the integrated code package. This study introduces an optimization technique for the optimization of gadolinia fuel rod designs in order to effectively reduce the peak powers for a few hot assemblies simultaneously during the cycle. Coupled with the gadolinia optimization, the optimum enrichments were determined using the same automated code package. Applying this technique to the reference core of Ulchin Unit 4 Cycle 11, the gadolinia fuel rods in each hot assembly were optimized to different numbers and positions from their original designs, and the maximum peak power was decreased by 2.5%, while the independent optimization technique showed a decrease of 1.6% for the same fuel assembly. The lower enrichments at the fuel rods adjacent to the corner gap (CG), guide tube (GT), and instrumentation tube (IT) were optimized from the current 4.1, 4.1, 4.1 w/o to 4.65, 4.2, 4.2 w/o. The increase in the cycle lifetime achieved through this methodology was 5 effective full-power days (EFPD) on an ideal equilibrium cycle basis while keeping the peak power as low as 2.3% compared with the original design.