Browse > Article

Manufacturing Process Effect on Strength and Corrosion Properties of Zr Alloys for Fuel Guide Tube  

Kim, Hyun-Gil (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute)
Kim, Il-Hyun (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute)
Choi, Byung-Kwan (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute)
Park, Sang-Yoon (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute)
Park, Jeong-Yong (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute)
Jeong, Yong-Hwan (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Metals and Materials / v.47, no.12, 2009 , pp. 852-859 More about this Journal
Abstract
The manufacturing process of zirconium alloys is an import factor to increase their strength and corrosion resistance. In order to find an improved manufacturing process of zirconium alloys in both Zr-1Nb-1Sn-0.1Fe (Alloy-A) and Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr (HANA-4) for fuel guide tubes, sheet samples were prepared by applying two- and three-step processes that were controlled by an annealing and reduction condition. The mechanical strength and corrosion resistance of both alloys were increased by applying the twostep process rather than the three-step process. From a matrix analysis using TEM, the property improvement is related to the decrease of the precipitate mean diameter with an application of the two-step process. In a comparison of the strength and corrosion properties between Alloy-A and HANA-4, the performance of HANA-4 was feasible for application to fuel guide tubes.
Keywords
Zr alloy; fuel guide tube; strength; corrosion; manufacturing process;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. B. Adamson, Zirconium in the Nuclear Industry, ASTM STP 633, 326 (1977)
2 M. H. Lee, J. S. Koo, Y. H. Jeong, and Y. H. Jung, Kor. J. Mater. Research. 9, 1123 (1999)
3 KNF, 2002-2-222, Development of Manufacturing and Performance Evaluation Technology for Zircomium Alloy Tubes (2009)
4 H. G. Kim, Y. H. Jeong, and T. H. Kim, J. Kor. Inst. Met. & Mater. 41, 424 (2003)
5 M. P. Puls, S. Q. Shi, and J. Rabier, J. Nucl. Mater. 336, 73(2005)   DOI   ScienceOn
6 H. G. Kim, B. K. Choi, K. T. Kim, S. D. Kim, C. H. Park, and Y. H. Jeong, J. Kor. Inst. Met. & Mater. 43, 565 (2005)
7 J. J. Kearns: Thermal Expansion and Preparred Orientation in Zircaloy, WAPD-TM-472, Westinghouse Electric Corp., Pittsburgh, Pa., (1965)
8 H. G. Kim, J. Y. Park, and Y. H. Jeong, J. Nucl. Mater. 347, 140 (2005)   DOI   ScienceOn
9 R. Yang, B. Cheng, J. Deshon, K. Edsinger, and O. Ozer, LWR Fuel Performance Conference, Kyoto, Japan, October(2005)
10 Y. R. Yu, H. Y. Chang, and Y. S. Kim, Cor. & Sci. Tech. 2, 253(2003)
11 T. Smith, J. Nucl. Mater. 18, 323 (1966)   DOI   ScienceOn
12 H. G. Kim, B. K. Choi, J. Y. Park, and Y. H. Jeong, Cor. Sci. 51, 2400 (2009)   DOI   ScienceOn
13 A. M. Garde, Zirconium in the Nuclear Industry, ASTM STP 1023, 548 (1989)
14 J. Y. Park, Y. H. Jeong, and Y. H. Jung, Met. Mater. Int. 7, 447 (2001)   DOI
15 S. J. King, R. L. Kesterson, K. H. Yueh, R. J. Comstock, W. M. Herwig, and S. D. Ferguson, 13th International Conference in Zirconium in the Nuclear Industry, Annecy, France, June 10-14, ASTM STP 1423, 471 (2002)
16 Y. I. Jung, M. H. Lee, H. G. Kim, J. Y. Park, and Y. H. Jeong, J. Alloys and Compounds. 479, 423 (2009)   DOI   ScienceOn
17 H. G. Kim, B. K. Choi, H. D. Cho, J. Y. Park, and Y. H. Jeong, J. Kor. Inst. Met. & Mater. 46, 482 (2008)
18 D. Charquet, R. Hahn, E. Ortlieb, J. P. Gros, and J. F. Wadier, Zirconium in the Nuclear Industry, ASTM STP 1023, 405 (1989)
19 K. Takeda and H. Anada, Zirconium in the Nuclear Industry, ASTM STP 1354, 592 (2000)