• 제목/요약/키워드: fuel gas

검색결과 4,082건 처리시간 0.029초

가스터빈의 성능과 연료전지의 출력비중이 고체산화물 연료전지/가스터빈 하이브리드 시스템 성능에 미치는 영향 (Influence of Gas Turbine Performance and Fuel Cell Power Share on the Performance of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems)

  • 안지호;강수영;김동섭
    • 대한기계학회논문집B
    • /
    • 제36권4호
    • /
    • pp.439-447
    • /
    • 2012
  • 출력 규모가 다른 세가지 상용 가스터빈들을 바탕으로 고체산화물 연료전지/가스터빈 하이브리드 시스템을 구성하고 성능을 비교하였다. 각 가스터빈을 사용할 때 연료전지와 가스터빈의 출력 비중 및 효율을 비교, 분석하였고 연료전지 설계온도를 변화시키면서 출력 비중의 변화와 시스템 효율 변화를 분석하였다. 수십 kW 급 소형 가스터빈을 사용한 하이브리드 시스템에서는 연료전지 온도가 변하여도 효율은 거의 변화가 없었지만 MW 급 및 수백 MW 급 등 중,대형 가스터빈을 사용하는 경우에는 연료 전지 작동온도가 높아질수록 시스템 효율이 높아짐을 확인하였다. 또한 연료전지로 공급되는 공기량을 조절하여 연료전지 출력 비중을 변화시키는 것에 대해서도 해석하였다.

수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구 (An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine)

  • 김인구;손지환;김정화;김정수;이성욱;김선문
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

석탄가스화 연료의 정적 예혼합 연소특성 (Premixed Combustion Characteristics of Coal Gasification Fuel in Constant Volume Combustion Chamber)

  • 김태권;장준영
    • 한국환경과학회지
    • /
    • 제15권6호
    • /
    • pp.601-606
    • /
    • 2006
  • The coal gasification fuel is important to replace petroleum fuel. Also they have many benefits for reducing the air pollution. Measurements on the combustion characteristics of synthetic gas from coal gasification have been conducted as compared with LPG in constant volume combustion chamber. The fuel is low caloric synthetic gas containing carbon monoxide 30%, hydrogen 20%, carbon dioxide 5%, and nitrogen 45%. To elucidate the combustion characteristics of the coal gasification fuel, the combustion pressures, combustion durations, and pollutants(NOx, $CO_2$, CO) are measured with equivalence ratios($\phi$), and initial pressures of fuel-air mixture in constant volume chamber. In the case of the coal gasification fuel, maximum combustion pressure and NOx concentration are lower rather than LPG fuel. However CO and $CO_2$ emission concentration are similar to that of LPG fuel.

층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구 (A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine)

  • 강병무;안현찬;이태원;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

직접 분사식 디젤기관에서 바이오디젤유의 적용에 관한 실험적 연구 (An Experimental Study on Application of Biodiesel Fuel in Direct Injection Diesel Engine)

  • 오영택;최승훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.818-823
    • /
    • 2001
  • Because the exhaust emissions from automobiles are increased, our environment is faced with very serious problems related to the air pollution in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. Lots of researcher have been attempted to develop various alternative fuel on purpose to reduce these harmful emissions. In this study, the potential possibility of esterfied rice bran oil which is a kind of biodiesel fuel was investigated as an alternative fuel for diesel engine. And, we tried to analysis not only total hydrocarbon but hydrocarbon components from $C_1$ to $C_6$ in exhaust gas using gas chromatography to seek the reason for remarkable reduction of exhaust emission. Individual hydrocarbon$(C_1\simC_6)$ as well as total hydrocarbon of biodiesel fuel is reduced remarkably than that of diesel fuel in this experiment.

  • PDF

바이오가스 연료기반 연료전지발전 기술동향 (Technology Trends of Fuel Cell Power Plant Based on Biogas Fuel)

  • 이종규;전재호;이종연
    • 신재생에너지
    • /
    • 제4권3호
    • /
    • pp.5-14
    • /
    • 2008
  • The target for the reduction of $CO_2$ emissions, as specified in the Kyoto Protocol, can only be achieved by an extended use of renewable fuels and the increasing of the energy efficiency. The energy generation from waste gases with a reasonable content of methane like biogas can significantly contribute to reach this target. A further reduction of greenhouse gas emissions is possible by increasing the electrical efficiency using progressive technologies. Fuel cells can be highly energy conversion devices. Utilizing biogas as the fuel for fuel cell systems offers an option that is technically feasible, potentially economically attractive and greenhouse gas neutral. High temperature fuel cells that are able to operate with carbon monoxide in the feed are well suited to these applications. Furthermore, because they do not require noble metal catalysts, the cost of high-temperature fuel cells has the greatest potential to become competitive in the near future compared to other types of fuel cells.

  • PDF

대형천연가스차량의 공연비제어기 설계를 위한 엔진모델 (An Engine Model of a Heavy-Duty Compressed Natural Gas Engine for Design of an Air-Fuel Ratio Controller)

  • 심한섭;이태연
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.80-87
    • /
    • 2003
  • Air partial pressure ratio and inlet air mass flow are influenced by water vapor and gaseous fuel in mixture on Compressed Natural Gas (CNG) engines. In this paper, the effects of the water vapor and the gaseous fuel that change the air mass flow and the air-fuel ratio are studied. Effective air mass ratio is defined as the air mass flow divided by mixture mass flow, and also it is applied to the estimation of the inlet air mass flow and the air-fuel ratio. The presence of the gaseous fuel and the water vapor in the mixture reduces the air partial pressure and the effective air mass ratio of the CNG engines. The experimental results for the CNG engine show that estimation of the air-fuel ratio based upon the effective air mass ratio is more accurate than that of a normal mode.

A CLASSIFICATION OF UNIQUELY DIFFERENT TYPES OF NUCLEAR FISSION GAS BEHAVIOR

  • HOFMAN GERARD L.;KIM YEON SOO
    • Nuclear Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.299-308
    • /
    • 2005
  • The behavior of fission gas in all major types of nuclear fuel has been reviewed with an emphasis on more recently discovered aspects. It is proposed that the behavior of fission gas can be classified in a number of characteristic types that occur at a high or low operating temperature, and/or at high or low fissile burnup. The crystal structure and microstructure of the various fuels are the determinant factors in the proposed classification scheme. Three types of behavior, characterized by anisotropic $\alpha$-U, high temperature metallic $\gamma$-U, and cubic ceramics, are well-known and have been extensively studied in the literature. Less widely known are two equally typical low temperature kinds: one associated with fission induced grain refinement and the other with fission induced amorphization. Grain refinement is seen in crystalline fuel irradiated to high burnup at low temperatures, whereas breakaway swelling is observed in amorphous fuel containing sufficient excess free-volume. Amorphous fuel, however, shows stable swelling if insufficient excess free-volume is available during irradiation.

Environmental analysis of present and future fuels in 2D simple model marine gas tubines

  • El Gohary, M. Morsy
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.559-568
    • /
    • 2013
  • Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the $CO_2$ emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the $NO_x$ emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more $NO_x$ than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive $NO_x$ control measures are a must to control these emissions levels.

Towards grain-scale modelling of the release of radioactive fission gas from oxide fuel. Part II: Coupling SCIANTIX with TRANSURANUS

  • G. Zullo;D. Pizzocri;A. Magni;P. Van Uffelen;A. Schubert;L. Luzzi
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4460-4473
    • /
    • 2022
  • The behaviour of the fission gas plays an important role in the fuel rod performance. In a previous work, we presented a physics-based model describing intra- and inter-granular behaviour of radioactive fission gas. The model was implemented in SCIANTIX, a mesoscale module for fission gas behaviour, and assessed against the CONTACT 1 irradiation experiment. In this work, we present the multi-scale coupling between the TRANSURANUS fuel performance code and SCIANTIX, used as mechanistic module for stable and radioactive fission gas behaviour. We exploit the coupled code version to reproduce two integral irradiation experiments involving standard fuel rod segments in steady-state operation (CONTACT 1) and during successive power transients (HATAC C2). The simulation results demonstrate the predictive capabilities of the code coupling and contribute to the integral validation of the models implemented in SCIANTIX.