DOI QR코드

DOI QR Code

Towards grain-scale modelling of the release of radioactive fission gas from oxide fuel. Part II: Coupling SCIANTIX with TRANSURANUS

  • G. Zullo (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • D. Pizzocri (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • A. Magni (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • P. Van Uffelen (European Commission, Joint Research Centre (JRC)) ;
  • A. Schubert (European Commission, Joint Research Centre (JRC)) ;
  • L. Luzzi (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
  • Received : 2022.02.24
  • Accepted : 2022.07.24
  • Published : 2022.12.25

Abstract

The behaviour of the fission gas plays an important role in the fuel rod performance. In a previous work, we presented a physics-based model describing intra- and inter-granular behaviour of radioactive fission gas. The model was implemented in SCIANTIX, a mesoscale module for fission gas behaviour, and assessed against the CONTACT 1 irradiation experiment. In this work, we present the multi-scale coupling between the TRANSURANUS fuel performance code and SCIANTIX, used as mechanistic module for stable and radioactive fission gas behaviour. We exploit the coupled code version to reproduce two integral irradiation experiments involving standard fuel rod segments in steady-state operation (CONTACT 1) and during successive power transients (HATAC C2). The simulation results demonstrate the predictive capabilities of the code coupling and contribute to the integral validation of the models implemented in SCIANTIX.

Keywords

Acknowledgement

The authors wish to thank Christopher Gosdin (FPoliSolutions, LLC) for his valuable contribution to the preparation of the HATAC C2 input file for the TRANSURANUS code. The authors also thank Ville Peri from FORTUM (Finland), who implemented the original version of the ANS-5.4 model in the TRANSURANUS code. This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847656.

References

  1. C. Wen, D. Yun, X. He, Y. Xin, W. Li, Z. Sun, Applying multi-scale simulations to materials research of nuclear fuels: a review, Mater. Rep.: Energy 1 (2021), 100048, https://doi.org/10.1016/J.MATRE.2021.100048.
  2. R. Martineau, D. Andrs, R. Carlsen, D. Gaston, J. Hansel, F. Kong, A. Lindsay, C. Permann, A. Slaughter, E. Merzari, R. Hu, A. Novak, R. Slaybaugh, Multiphysics for nuclear energy applications using a cohesive computational framework, Nucl. Eng. Des. 367 (2020), 110751, https://doi.org/10.1016/J.NUCENGDES.2020.110751.
  3. O.-N. NSC, State-of-the-art Report on Multi-Scale Modelling of Nuclear Fuels, Nuclear Science October.
  4. M.S. Veshchunov, A.V. Boldyrev, A.V. Kuznetsov, V.D. Ozrin, M.S. Seryi, V.E. Shestak, V.I. Tarasov, G.E. Norman, A.Y. Kuksin, V.V. Pisarev, D.E. Smirnova, S.V. Starikov, V.V. Stegailov, A.V. Yanilkin, Development of the advanced mechanistic fuel performance and safety code using the multi-scale approach, Nucl. Eng. Des. 295 (2015) 116-126, https://doi.org/10.1016/J.NUCENGDES.2015.09.035.
  5. L. Holt, U. Rohde, M. Seidl, A. Schubert, P.V. Uffelen, R. Macian-Juan, Development of a general coupling interface for the fuel performance code transuranus - tested with the reactor dynamics code dyn3d, Ann. Nucl. Energy 84 (2015) 73-85, https://doi.org/10.1016/J.ANUCENE.2014.10.040.
  6. M. Garcia, R. Tuominen, A. Gommlich, D. Ferraro, V. Valtavirta, U. Imke, P.V. Uffelen, L. Mercatali, V. Sanchez-Espinoza, J. Leppanen, S. Kliem, A serpent2-subchanflow-transuranus coupling for pin-by-pin depletion calculations in light water reactors, Ann. Nucl. Energy 139 (2020), 107213, https://doi.org/10.1016/J.ANUCENE.2019.107213.
  7. H. Suikkanen, V. Rintala, A. Schubert, P.V. Uffelen, Development of coupled neutronics and fuel performance analysis capabilities between serpent and transuranus, Nucl. Eng. Des. 359 (2020), 110450, https://doi.org/10.1016/J.NUCENGDES.2019.110450.
  8. T.R. Pavlov, F. Kremer, R. Dubourg, A. Schubert, P.V. Uffelen, Towards a More Detailed Mesoscale Fission Product Analysis in Fuel Performance Codes: a Coupling of the Transuranus and Mfpr-F Codes, 2018.
  9. K. Lassmann, Transuranus: a fuel rod analysis code ready for use, Nuclear Mater. Fission React. (1992) 295-302, https://doi.org/10.1016/b978-0-444-89571-4.50046-3.
  10. A. Magni, A.D. Nevo, L. Luzzi, D. Rozzia, M. Adorni, A. Schubert, P.V. Uffelen, Chapter 8 - the Transuranus Fuel Performance Code, 2021, https://doi.org/10.1016/B978-0-12-818190-4.00008-5.
  11. D. Pizzocri, T. Barani, L. Luzzi, Sciantix: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020), 152042, https://doi.org/10.1016/j.jnucmat.2020.152042.
  12. T. Barani, D. Pizzocri, F. Cappia, L. Luzzi, G. Pastore, P. V. Uffelen, Modeling high burnup structure in oxide fuels for application to fuel performance codes. part i: high burnup structure formation, J. Nucl. Mater. 539. doi:10.1016/j.jnucmat.2020.152296.
  13. D. Pizzocri, C. Rabiti, L. Luzzi, T. Barani, P.V. Uffelen, G. Pastore, Polypole-1: an accurate numerical algorithm for intra-granular fission gas release, J. Nucl. Mater. 478 (2016) 333-342, https://doi.org/10.1016/j.jnucmat.2016.06.028.
  14. G. Pastore, D. Pizzocri, C. Rabiti, T. Barani, P.V. Uffelen, L. Luzzi, An effective numerical algorithm for intra-granular fission gas release during nonequilibrium trapping and resolution, J. Nucl. Mater. 509 (2018) 687-699, https://doi.org/10.1016/j.jnucmat.2018.07.030.
  15. G. Zullo, D. Pizzocri, L. Luzzi, On the use of spectral algorithms for the prediction of short-lived volatile fission product release: methodology for bounding numerical error, Nucl. Eng. Technol. 54 (2022) 1195-1205, https://doi.org/10.1016/J.NET.2021.10.028.
  16. W.L. Oberkampf, T.G. Trucano, C. Hirsch, Verification, validation, and predictive capability in computational engineering and physics, Appl. Mech. Rev. 57 (2002) 345-384, https://doi.org/10.1115/1.1767847.
  17. EERA-JPNM, Inspyre - Investigations Supporting Mox Fuel Licensing in Esnii Prototype Reactors, 2017.
  18. P. V. Uffelen, A. Schubert, L. Luzzi, T. Barani, A. Magni, D. Pizzocri, M. Lainet, V. Marelle, B. Michel, B. Boer, S. Lemehov, A. D. Nevo, Incorporation and verification of models and properties in fuel performance codes, INSPYRE Deliverable D7.2.
  19. L. Luzzi, T. Barani, B. Boer, L. Cognini, A.D. Nevo, M. Lainet, S. Lemehov, A. Magni, V. Marelle, B. Michel, D. Pizzocri, A. Schubert, P.V. Uffelen, M. Bertolus, Assessment of three european fuel performance codes against the superfact-1 fast reactor irradiation experiment, Nucl. Eng. Technol. 53 (2021) 3367-3378, https://doi.org/10.1016/j.net.2021.04.010.
  20. J. A. Turnbull, C. E. Beyer, Background and Derivation of ans-5.4 Standard Fission Product Release Modeldoi:10.2172/1033086.
  21. G. Zullo, D. Pizzocri, A. Magni, P. V. Uffelen, A. Schubert, L. Luzzi, Towards Grain-Scale Modelling of the Release of Radioactive Fission Gas from Oxide Fuel . Part I: Sciantix, Nuclear Engineering and Technologydoi:10.1016/J.NET.2022.02.011.
  22. M. Bruet, J. Dodelier, P. Melin, M.-L. Pointund, Contact 1 and 2 Experiments: Behaviour of Pwr Fuel Rod up to 15000 Mwd/tu, 1980, pp. 235-244.
  23. M. Charles, J.J. Abassin, D. Baron, M. Bruet, P. Melin, Utilization of Contact Experiments to Improve the Fission Gas Release Knowledge in Pwr Fuel Rods, 1983, pp. 1-18.
  24. D. Yun, J. Rest, G.L. Hofman, A.M. Yacout, An initial assessment of a mechanistic model, grass-sst, in uepuezr metallic alloy fuel fission-gas behavior simulations, J. Nucl. Mater. 435 (2013) 153-163, https://doi.org/10.1016/J.JNUCMAT.2012.12.024.
  25. J. Rest, A generalized model for radiation-induced amorphization and crystallization of u3si and u3si2 and recrystallization of uo2, J. Nucl. Mater. 240 (1997) 205-214, https://doi.org/10.1016/S0022-3115(96)00714-3.
  26. J. Rest, A model for the influence of microstructure, precipitate pinning and fission gas behavior on irradiation-induced recrystallization of nuclear fuels, J. Nucl. Mater. 326 (2004) 175-184, https://doi.org/10.1016/J.JNUCMAT.2004.01.009.
  27. R.J. White, M.O. Tucker, A new fission-gas release model, J. Nucl. Mater. 118 (1983) 1-38, https://doi.org/10.1016/0022-3115(83)90176-9.
  28. M.S. Veshchunov, V.I. Tarasov, Modelling of irradiated uo2 fuel behaviour under transient conditions, J. Nucl. Mater. 437 (2013) 250-260, https://doi.org/10.1016/J.JNUCMAT.2013.02.011.
  29. M.S. Veshchunov, V.D. Ozrin, V.E. Shestak, V.I. Tarasov, R. Dubourg, G. Nicaise, Development of the mechanistic code mfpr for modelling fission-product release from irradiated UO2 fuel, Nucl. Eng. Des. 236 (2006) 179-200, https://doi.org/10.1016/j.nucengdes.2005.08.006.
  30. G. Pastore, L. Luzzi, V.D. Marcello, P.V. Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86, https://doi.org/10.1016/j.nucengdes.2012.12.002.
  31. M.R. Tonks, D. Andersson, S.R. Phillpot, Y. Zhang, R. Williamson, C.R. Stanek, B.P. Uberuaga, S.L. Hayes, Mechanistic materials modeling for nuclear fuel performance, Ann. Nucl. Energy 105 (2017) 11-24, https://doi.org/10.1016/J.ANUCENE.2017.03.005.
  32. R2ca (Reduction of Radiological Consequences of Design Basis and Extension Accidents, 2019.
  33. IAEA, Safety Reports Series No. 53, Derivation of the Source Term and Analysis of the Radiological Consequences for the Design Basis Accidents at Research Reactor, vol. 178, 2008, 978-992-0-109707-1.
  34. Safety of Nuclear Power Plants: Design, INTERNATIONAL ATOMIC ENERGY AGENCY, 2016.
  35. B. Dong, L. Li, C. Li, W. Zhou, J. Yin, D. Wang, Review on models to evaluate coolant activity under fuel defect condition in pwr, Ann. Nucl. Energy 124 (2019) 223-233, https://doi.org/10.1016/j.anucene.2018.10.009.
  36. B.J. Lewis, P.K. Chan, A. El-Jaby, F.C. Iglesias, A. Fitchett, Fission product release modelling for application of fuel-failure monitoring and detection - an overview, J. Nucl. Mater. 489 (2017) 64-83, https://doi.org/10.1016/j.jnucmat.2017.03.037.
  37. C. Vitanza, E. Kolstad, U. Graziani, Fission Gas Release from UO2 Pellet Fuel at High Burn-Up, OECD HALDEN REACTOR PROJECT, 1979, pp. 361-366.
  38. M.S. Veshchunov, Mechanisms of fission gas release from defective fuel rods to water coolant during steady-state operation of nuclear power reactors, Nucl. Eng. Des. 343 (2019) 57-62, https://doi.org/10.1016/J.NUCENGDES.2018.12.021.
  39. H. Faure-Geors, D. Baron, C. Struzik, Hatac Experiments (1965-1990) Fission Gas Release at High Burn-Up, Effect of a Power Cycling, 1990.
  40. A. Magni, L. Luzzi, D. Pizzocri, A. Schubert, P.V. Uffelen, A.D. Nevo, Modelling of thermal conductivity and melting behaviour of minor actinide-mox fuels and assessment against experimental and molecular dynamics data, J. Nucl. Mater. 557 (2021), 153312, https://doi.org/10.1016/j.jnucmat.2021.153312.
  41. A. Cechet, S. Altieri, T. Barani, L. Cognini, S. Lorenzi, A. Magni, D. Pizzocri, L. Luzzi, A new burn-up module for application in fuel performance calculations targeting the helium production rate in (u,pu)o2 for fast reactors, Nucl. Eng. Technol. 53 (2021) 1893-1908, https://doi.org/10.1016/j.net.2020.12.001.
  42. D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P.V. Uffelen, S.A. Pitts, A. Alfonsi, J.D. Hales, A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330, https://doi.org/10.1016/j.jnucmat.2018.02.024.
  43. T. Barani, G. Pastore, A. Magni, D. Pizzocri, P.V. Uffelen, L. Luzzi, Modeling intra-granular fission gas bubble evolution and coarsening in uranium dioxide during in-pile transients, J. Nucl. Mater. 538 (2020), 152195, https://doi.org/10.1016/j.jnucmat.2020.152195.
  44. L. Cognini, A. Cechet, T. Barani, D. Pizzocri, P.V. Uffelen, L. Luzzi, Towards a physics-based description of intra-granular helium behaviour in oxide fuel for application in fuel performance codes, Nucl. Eng. Technol. 53 (2021) 562-571, https://doi.org/10.1016/j.net.2020.07.009.
  45. R. Giorgi, A. Cechet, L. Cognini, A. Magni, D. Pizzocri, G. Zullo, A. Schubert, P.V. Uffelen, L. Luzzi, Physics-based modelling and validation of inter-granular helium behaviour in sciantix, Nucl. Eng. Technol. 54 (2022) 2367-2375, https://doi.org/10.1016/J.NET.2022.01.012.
  46. D. Pizzocri, F. Cappia, L. Luzzi, G. Pastore, V.V. Rondinella, P.V. Uffelen, A semiempirical model for the formation and depletion of the high burnup structure in uo2, J. Nucl. Mater. 487 (2017) 23-29, https://doi.org/10.1016/j.jnucmat.2017.01.053.
  47. A. Magni, D. Pizzocri, L. Luzzi, M. Lainet, B. Michel, Application of the sciantix fission gas behaviour module to the integral pin performance in sodium fast reactor irradiation conditions, Nucl. Eng. Technol.doi:10.1016/J.NET.2022.02.003.
  48. T. Barani, E. Bruschi, D. Pizzocri, G. Pastore, P.V. Uffelen, R.L. Williamson, L. Luzzi, Analysis of transient fission gas behaviour in oxide fuel using bison and transuranus, J. Nucl. Mater. 486 (2017) 96-110, https://doi.org/10.1016/j.jnucmat.2016.10.051.
  49. Y. Perin, Development of a Multi-Physics, Multi-Scale Simulation Tool for Lwr Safety Analysis, vol. 9, 2016.
  50. S.J. Chapman, Fortran for Scientists and Engineers, McGraw-Hill Higher Education, NY, 2017.
  51. K. Lassmann, A. Schubert, P.V. Uffelen, C. Gyori, J. van de Laar, TRANSURANUS Handbook, Copyright © 1975-2014, 2014.
  52. (FUMAC), Fuel Modelling in Accident Conditions, IAEA, 2019, https://www.iaea.org/publications/13604/fuel-modelling-in-accident-conditions-fumac.
  53. The Research Reactor Siloe, Assoc. Belge Develop. Pacifique Energie At. Bull., Inform. Vol: vol. 8: No.
  54. G. Pastore, L.P. Swiler, J.D. Hales, S.R. Novascone, D.M. Perez, B.W. Spencer, L. Luzzi, P.V. Uffelen, R.L. Williamson, Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling, J. Nucl. Mater. 456 (2015) 398-408, https://doi.org/10.1016/j.jnucmat.2014.09.077.
  55. R.J. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater. 325 (2004) 61-77, https://doi.org/10.1016/j.jnucmat.2003.10.008.
  56. A. Booth, A Method of Calculating Fission Gas Diffusion from UO2 Fuel and its Application to the X-2-F Loop Test, Atomic Energy of Canada Limited.
  57. S. D. Beck, The Diffusion of Radioactive Fission Products from Porous Fuel Elements, Physics and Mathematics (TID-4500, fifteenth ed.).
  58. F.S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solid. 6 (1958) 335-351, https://doi.org/10.1016/0022-3697(58)90053-2.
  59. M.V. Speight, A calculation on the migration of fission gas in material exhibiting precipitation and re-solution of gas atoms under irradiation, Nucl. Sci. Eng. 37 (1969) 180-185, https://doi.org/10.13182/nse69-a20676.
  60. M.S. Veshchunov, Modelling of grain face bubbles coalescence in irradiated UO2 fuel, J. Nucl. Mater. 374 (2008) 44-53, https://doi.org/10.1016/j.jnucmat.2007.06.021.
  61. N. Cayet (hwre488), Investigation of Delayed Fission Gas Release, 1996.
  62. M.O. Tucker, J.A. Turnbull, The morphology of interlinked porosity in nuclear fuels, Proceed. Royal Soc. Lond. A. Math. and Phys. Sci. 343 (1975) 299-314, https://doi.org/10.1098/rspa.1975.0067.
  63. M.O. Tucker, The spacing of intergranular fission gas bubbles in irradiated uo\ uo\ {2\},{2\}, J. Nucl. Mater. 74 (1978) 34-40. https://doi.org/10.1016/0022-3115(78)90530-5
  64. M.O. Tucker, A simple description of interconnected grain edge porosity, J. Nucl. Mater. 79 (1979) 199-205, https://doi.org/10.1016/0022-3115(79)90447-1.
  65. G. Pastore, Modelling of Fission Gas Swelling and Release in Oxide Nuclear Fuel and Application to the Transuranus Code, 2012, 1-110.
  66. K. Lassmann, H. Benk, Numerical algorithms for intragranular fission gas release, J. Nucl. Mater. 280 (2000) 127-135, https://doi.org/10.1016/S0022-3115(00)00044-1.