• 제목/요약/키워드: fuel gas

검색결과 4,082건 처리시간 0.027초

Development of a Mechanistic Fission Gas Release Model for LWR $UO_2$ Fuel Under Steady-State Conditions

  • Koo, Yang-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.229-246
    • /
    • 1996
  • A mechanistic model has been developed to predict the release behavior of fission gas during steady-state irradiation of LWR UO$_2$ fuel. Under the assumption that UO$_2$ grain surface is composed of fourteen identical circular faces and grain edge bubble can be represented by a triangulated tube around the circumference of three circular grain faces, it introduces the concept of continuous formation of open grain edges tunnels that is proportional to grain edge swelling. In addition, it takes into account the interaction between the gas release from matrix to grain boundary and the reintroduction of gas atoms into the matrix by the irradiation-induced re-solution of grain face bubbles. It also treats analytically the behavior of intragranular, intergranular, and grain edge bubbles under the assumption that both intragranular and intergranular bubbles are uniform in both radius and number density. Comparison of the present model with experimental data shows that the model's prediction produces reasonable agreement for fuel with centerline temperatures of 1000 to 140$0^{\circ}C$, wide scatter band for fuel with centerline temperatures lower than 100$0^{\circ}C$, and underprediction for fuel with centerline temperatures higher than 140$0^{\circ}C$.

  • PDF

배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발 (Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas)

  • 신은주;김영배
    • 한국수소및신에너지학회논문집
    • /
    • 제34권1호
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

Economic Feasibility Study for Molten Carbonate Fuel Cells Fed with Biogas

  • Song, Shin-Ae;Han, Jong-Hee;Yoon, Sung-Pil;Nam, Suk-Woo;Oh, In-Hwan;Choi, Dae-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권2호
    • /
    • pp.102-111
    • /
    • 2010
  • Molten carbonate fuel cell (MCFC) power plants are one of most attractive electricity generation systems for the use of biogas to generate high-efficiency ultra-clean power. However, MCFCs are considerably more expensive than comparable conventional electricity generation systems. The commercialization of MCFCs has been delayed more than expected. After being effective in the Kyoto protocol and considerably increasing the fossil price, the attention focused on $CO_2$ regression and renewable energy sources has increased dramatically. In particular, the commercialization and application of MCFC systems fed with biogas have been revived because of the characteristics of $CO_2$ collection and fuel variety of MCFCs. Better economic results of MCFC systems fed with biogas are expected because biogas is a relatively inexpensive fuel compared to liquefied natural gas (LNG). However, the pretreatment cost is added when using anaerobic digester gas (ADG), one of the biogases, as a fuel of MCFC systems because it contains high $H_2S$ and other contaminants, which are harmful sources to the MCFC stack in ADG. Thus, an accurate economic analysis and comparison between MCFCs fed with biogas and LNG are very necessary before the installation of an MCFC system fed with biogas in a plant. In this paper, the economic analysis of an MCFC fed with ADG was carried out for various conditions of electricity and fuel price and compared with the case of an MCFC fed with LNG.

가정용 연료전지 전력변환장치 전자파적합성 성능 평가 연구 (A Study on Electromagnetic Compatibility Performance Evaluation of Power Conditioning System for Residential Fuel Cell)

  • 최영주;남태호;이은경;이덕권;이정운;이승국;문종삼
    • 한국가스학회지
    • /
    • 제21권6호
    • /
    • pp.23-29
    • /
    • 2017
  • 신재생에너지 중 태양 및 풍력에너지는 자원의 제어가 쉽지 않아 불규칙적인 전력을 생산하여 계통연계 시 불안정하다. 하지만 연료전지 시스템의 경우, 제어가능한 자원인 수소에너지를 기반으로 일정한 주파수와 전력을 생산하며 계통연계 시 좀 더 안정적이다. 이와 같은 연료전지 시스템을 가정에서 사용하기 위해서는 전력변환장치의 안전성능이 중요하며 그 중 전자파적합성 성능 평가 방법이 중요하게 여겨진다. 본 연구에서는 연료전지 전력변환장치 성능평가 항목 중 전자파적합성의 국제규격과 국내 인증 기준 KGS AB934 PC53과 비교 분석하여 전원주파수 자계내성 시험의 도입 가능성을 검토하였다. 또한 실증 평가를 실시하여 성능 평가 보조 지표로 활용 가능한 정량적 데이터 확보에 대해 연구하였다.

저열량 바이오매스 합성가스의 혼소특성 (The Duel Fuel Combustion of Low Calorific Biomass Syngas with Fuel Oil)

  • 윤상준;김용구;전창준;이재구
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.860-865
    • /
    • 2012
  • 바이오매스 합성가스는 저열량 가스이지만 유류를 대체하기 위한 목적으로 공업로, 보일러 등에서 혼소방법으로 이용되고 있다. 혼소버너의 기본구조는 오일버너를 중심부로 하고 저열량 가스 연료를 그 주위로 공급하는 형태로 설계되었다. 본 연구에서는 가스의 균일분산 방법과 가스노즐 각도를 변화시키는 방법을 적용하여 세 종류의 버너를 설계하였다. 연소공기량 증가에 따라 CO 발생량이 감소하였으며, 혼소조건에서 화염으로부터 잔염 발생 원인은 오일버너로부터 미립화 불량인 것으로 나타났다. 혼소조건에서는 가스와 오일연료에 대한 과잉공기 요구량이 서로 다르기 때문에 적절하게 연소공기량을 맞추기가 어려웠지만, 과잉산소 4.7~8.2% 범위에서 안정적인 연소조건 유지가 가능하였다. 본 연구를 통하여 합성가스와 유류의 혼소 이용은 합성가스 성분이 오일보다 연소속도가 빠르게 이루어져 오일버너 미립화를 촉진시켜주고, 오일 단독연소조건보다 CO 배출 농도를 낮게 유지할 수 있음을 알 수 있었다.

A Thermal Conductivity Model for LWR MOX Fuel and Its Verification Using In-pile Data

  • Byung-Ho Lee;Yang-Hyun Koo;Jin-Silk Cheon;Je-Yong Oh;Hyung-Koo Joo;Dong-Seong Sohn
    • Nuclear Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.482-493
    • /
    • 2002
  • The MOX fuel for LWR is fabricated either by direct mechanical blending of UO$_2$ and PuO$_2$ or by two stage mixing. Hence Pu-rich particles, whose Pu concentrations are higher than pellet average one and whose size distribution depends on a specific fabrication method, are inevitably dispersed in MOX pellet. Due to the inhomogeneous microstructure of MOX fuel, the thermal conductivity of LWR MOX fuel scatters from 80 to 100 % of UO$_2$ fuel. This paper describes a mechanistic thermal conductivity model for MOX fuel by considering this inhomogeneous microstructure and presents an explanation for the wide scattering of measured MOX fuel's thermal conductivity. The developed model has been incorporated into a KAERI's fuel performance code, COSMOS, and then evaluated using the measured in-pile data for MOX fuel. The database used for verification consists of homogeneous MOX fuel at beginning-of-life and inhomogeneous MOX fuel at high turnup. The COSMOS code predicts the thermal behavior of MOX fuel well except for the irradiation test accompanying substantial fission gas release. The over-prediction with substantial fission gas release seems to suggest the need for the introduction of a recovery factor to a term that considers the burnup effect on thermal conductivity.

Application of DFB Diode Laser Sensor to Reacting Flow (II) - Liquid-Gas 2-Phase Reacting Flow -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.139-145
    • /
    • 2003
  • Diode laser sensor is conducted to measure the gas temperature in the liquid-gas 2-phase counter flow flame. C$\_$10/H/ sub 22/ and city gas were used as liquid fuel and gas fuel, respectively. Two vibrational overtones of H$_2$O were selected and measurements were carried out in the spray flame region stabilized the above gaseous premixed flame. The path-averaged temperature measurement using diode laser absorption method succeeded in the liquid fuel combustion environment regardless of droplets of wide range diameter. The path-averaged temperature measured in the post flame of liquid-gas 2-phase counter flow flame showed qualitative reliable results. The successful demonstration of time series temperature measurement in the liquid-gas 2-phase counter flow flame gave us motivation of trying to establish the effective control system in practical combustion system. These results demonstrated the ability of real-time feedback from combustor inside using the non-intrusive measurement as well as the possibility of application to practical combustion system. Failure case due to influence of spray flame was also discussed.

유동 가스 온도 변화에 따른 삼각 분리 막대형 차압 유량계 유량 특성에 관한 연구 (A Study on Flow Rate Characteristics of a Triangular Separate Bar Differential Pressure Flow Meter according to the Variation of Gas Flow Temperature)

  • 김광일;유원열;이충훈
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.89-94
    • /
    • 2008
  • Differential pressure flow meters which have a shape of triangular separate bar(TSB) were tested for investigating the flow rate characteristics of the flow meters with varying the temperature of the gas flow. Three kinds of the triangular separate bar flow meters whose aerodynamic angles are different one another are used. The mass flow rate of the flow meters are evaluated using a non-dimensional parameter which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters, and atmospheric pressure. A burner system which is similar to gas turbine was used for raising the gas flow temperature. The burner system was operated with varying the air/fuel ratio by controlling both the fuel injection rate from the fuel nozzle and air flow rate from a blower. An empirical correlation between the mass flow rate at the TSB flow meter and the non-dimensional parameter was obtained. The empirical correlation showed linear relationship between the mass flow rate and the non-dimensional parameter H. Also, the mass flow rate characteristics at the TSB flow meter was affected by the gas temperature.

지리정보시스템을 이용한 도시가스시설의 정량적 위험성 평가 (Quantitative Risk Assessment of City Gas Facilities Using Geographic Information System)

  • 이정우;김기수;고재욱
    • 한국가스학회지
    • /
    • 제2권2호
    • /
    • pp.12-17
    • /
    • 1998
  • 급속한 도시가스 보급률의 증가로 인해 국내 도시가스시설에서는 많은 사고가 일어났었다. 이러한 도시가스 사고에 대한 예방 대책으로 여러 관련기관에서는 도시가스의 물성치등 안전 관련 자료들과 도시가스시설에 대한 정보들을 부분적으로 구축$\cdot$관리하고 있다. 하지만 각 기관들이 구축한 정보들을 공유하고 있지 않기 때문에 정보들을 중복되게 구축$\cdot$관리하고 있어 이에 대한 효율성이 결여되어 있다. 따라서 정보 관리와 공유를 효과적으로 할 수 있으며, 정보들을 이용하여 정량적 위험성 평가 및 방재 계획을 지원할 수 있는 지리정보시스템에 관한 연구를 하였다.

  • PDF

스팀분사를 고려한 SOFC/GT 하이브리드 시스템의 설계 성능 비교 분석 (Design Performance Analysis of Solid Oxide Fuel Cell / Gas Turbine Hybrid Systems Considering Steam Injection)

  • 박성구;김동섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3224-3229
    • /
    • 2007
  • This study aims to analyse the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. The steam is generated by recovering heat from the exhaust gas. Two system configurations, with difference being the operating pressure of the SOFC, are examined and effects of steam injection on performances of the two systems are compared. Two representative gas turbine pressure ratios are simulated and a wide range of both the fuel cell temperature and the turbine inlet temperature is examined. Without steam injection, the pressurized system generally exhibits better system efficiency than the ambient pressure system. Steam injection increases system power capacity for all design cases. However, its effect on system efficiency varies much depending on design conditions. The pressurized system hardly takes advantage of the steam injection in terms of the system efficiency. On the other hand, steam injection contributes to the efficiency improvement of the ambient pressure system in some design conditions. A higher pressure ratio provides a better chance of efficiency increase due to steam injection.

  • PDF