• Title/Summary/Keyword: fuel direct injection

Search Result 416, Processing Time 0.029 seconds

Fuel Spray Characteristics of GDI Injector (직분식 가솔린기관 인젝터의 연료 분무 특성)

  • Kwon, Sang-Il;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.194-201
    • /
    • 2000
  • This paper is intended to analyze the macroscopic behavior and transient atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. Time-resolved droplet axial and radial velocity components and droplet diameter were measured at many probe positions in both axial and radial directions by a two-component phase Doppler particle analyzer (PDPA). In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDI engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

  • PDF

Characteristics of a High Pressure Accumulator Type Fuel Injection System (축압식 고압 연료분사펌프 시스템 특성 해석)

  • Park, Seok Beom;Koo, Ja Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1101-1110
    • /
    • 1998
  • Computational investigation was conducted to examine the performance of a high pressure common-rail fuel injection system which is used to power a passenger car direct injection (Dl) diesel engine. The pipe flows were modeled by one dimensional wave equation and solved by implicit FDM Each volume of injector was considered as chambers with orifice nozzle in connections. These simulation results were compared with the experimental data of Ganser Hydromag. The comparison of needle life and rate of injection between simulation data and experimental data showed quite a good agreement Different shape of injection rate can be made by adjusting the size of inlet orifice and exit orifice in the piston chamber The pilot injection was accomplished by adjusting command signal.

Effects of Injection Pressures on Combustion and Emissions in a Direct Injection LPG Spark Ignition Engine (적접분사식 LPG엔진에서 연료분사압력이 연소/배기특성에 미치는 영향 연구)

  • Lee, Seok-Whan;Cho, Jun-Ho;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • High pressure LPG fuel spray with a conventional swirl injector was visualized and the impact of the injection pressure was also investigated using a DISI (direct injection spark ignition) LPG single cylinder engine. Engine performance and emission characteristics were evaluated over three different injection pressure and engine loads at an engine speed of 1500 rpm. The fuel spray pattern appeared to notably have longer penetration length and narrower spray angle than those of gasoline due to its lower angular momentum and rapid vaporization. Fuel injection pressure did not affect combustion behaviors but for high injection pressure and low load condition ($P_{inj}$=120 bar and 2 bar IMEP), which was expected weak flow field configuration and low pressure inside the cylinder. In terms of nano particle formation the positions of peak values in particle size distributions were not also changed regardless of the injection pressure, and its number densities were dramatically reduced compared to those of gasoline.

A Study on Combustion and Exhaust Emission in Direct Injection Diesel Engine (직접분사식 디젤기관의 연소 및 배기에 관한 연구)

  • Kim, Du-Beom;Kim, Gi-Bok;Kim, Chi-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.105-113
    • /
    • 2017
  • Recently the direct injection diesel engine is the most efficient one available for road vehicles, so this fundamental advantage suggests the compression injection diesel engine are a wise choice for future development efforts. The compression ignition diesel engine, with its bigger compression ratios if compared to the SI engine, offers a higher thermodynamic efficiency, also additionally the diesel engine with its less pumping losses due to the throttled intake charge as in a SI engine has higher fuel economy. But the largest obstacle to the success of this engine is meeting emission standards for Nitric oxides and particulate matter while maintain fuel consumption advantage over currently available engines. Thus its use should be largely promoted, however, diesel engine emits more Nitric oxides and particulate matter than other competing one. There has been a trade-off between PM and NOx, so efforts to reduce NOx have increased PM and vice versa, but trap change this situation and better possibility emerge for treating NOx emission with engine related means, such as injection timing, equivalence ratio, charge composition, and engine speed. The common rail direct injection system is able to adjust the fuel injection timing in a compression ignition engine, so this electronically controlled injection system can reduce the formation of NOx gas without increase in soot. In this study it is designed and used the engine test bed which is installed with turbocharge and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters.

Stabilization Characteristics of Diffusion Flame with Auxiliary Fuel Supply through a Bluff Body (보조연료의 공급이 확산화염의 보염특성에 미치는 영향)

  • An, J.G.;Song, K.K.
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.11-18
    • /
    • 1996
  • The stabilization characteristics of diffusion flame formed behind a bluff body with fuel injection slits was experimentally investigated by varying main fuel injection angles and auxiliary fuel injection conditions. The flame stability limits, temperature and length of recirculation zone, direct and schlieren photographs of flames were measured in order to study the stabilization mechanism of the diffusion flame. The results of this investigation are as follows. The stability limits can be improved by the condition of the kind and quanity of the injected auxiliary fuel. The length and temperature decrease with injection of auxiliary fuel, and these phenomena are remarkable when LPG is injected into the recirculation zone. When the LPG is injected into the recirculation zone, flame remains sooty. Fluctuation of fuel and main stream is generated actively by air injection.

  • PDF

A Basic Experimental Study on Potential Operating Range in Gasoline Direct-Injection Compression Ignition (GDICI) Engine (가솔린 직접분사식 압축착화 엔진의 가능한 운전영역에 관한 기초실험 연구)

  • Cha, Junepyo;Yoon, Sungjun;Lee, Seokhwon;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.33-35
    • /
    • 2013
  • The present work is an experimental investigation on potential operating range using directly injected gasoline fuel in a single-cylinder compression ignition (CI) engine. The objectives of present study were to apply auto-ignited combustion to gasoline fuel and to evaluate potential operating range. In order to auto-ignite gasoline fuel in CI engine, the fuel direct-injection system and the intake air system were modified that a flow rate and temperature of intake air were regulated. The heat-release rate (HRR), net indicated mean effective pressure (IMEP), start of combustion (SOC), and combustion duration were derived from in-cylinder pressure data in a test engine, which has 373.33cc displacement volume and 17.8 compression ratio. The exhaust emission characteristics were obtained emission gas analyzer and smoke meter on the exhaust line system.

  • PDF

A Study on the Effects of LPDi System Application in 2.0L Hybrid Vehicles Using Energy Flow Analysis (에너지 흐름 분석을 이용한 2.0L 급 하이브리드 차량에서의 LPDi 시스템 적용 효과 연구)

  • Young kuk An;Bonseok Koo;Jinil Park
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.7-15
    • /
    • 2024
  • This study investigates the performance of 2.0L hybrid vehicles equipped with Liquefied Petroleum Gas (LPG) fuel engines, using energy flow analysis. By incorporating a direct LPG injection system (LPDi), the research aims to overcome the reduced maximum output commonly associated with LPG engines. Moreover, the integration of a hybrid system is explored as a means to enhance vehicle fuel economy while reducing CO2 and emissions. The study employs data from FTP-75 and HWFET driving cycle to inform future research efforts focused on predicting CO2 emissions and fuel economy for Hybrid Electric Vehicles utilizing LPG Direct Injection. The findings offer insights into optimizing fuel systems for better environmental and operational performance in hybrid vehicles.

A Fundamental Study of Air-Fuel Ratio Control on LPG Liquid Injection Engines (LPG 액체분사엔진의 공연비제어에 관한 기초 연구)

  • Sim, Han-Seop;Sunwoo, Myoungho;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.80-87
    • /
    • 2002
  • Liquefied petroleum gas (LPG) is used in spark ignition (SI) engines. Fuel injection rate of an injector is affected by fuel temperature and pressure in LPG liquid injection systems for either a multi-point-injection (MPI) or a direct injection (DI) engine. Even fuel injection conditions are varied, the air-fuel ratio should be accurately controlled to reduce exhaust emissions. In this study, a correction factor fur the fuel injection rate of an injector is derived from density ratio and pressure difference ratio. A compensation method of injected fuel amount is proposed for a fuel injection control system. The experimental results for the LPG liquid injection system in a SI engine show that this system works well fur a full range of engine speed and load condition, and the air-fuel ratio is accurately controlled by the proposed correction factor.

Fuel stratification by multiple injection in DME HCCI engine combustion (DME 예혼합 압축착화 엔진에서 다단분사를 통한 연료 성층화)

  • Yoon, Hyeonsook;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.311-312
    • /
    • 2012
  • Homogeneous charge compression ignition combustion with multiple-injection strategy using dimethyl-ether was investigated in a single cylinder direct-injection compression-ignition engine. The combustion performance and exhaust emissions were tested by varying the post injection conditions. The experiments were carried out under low load and low speed conditions. By the late post injection near the top dead center, the combustion phase was retarded and lengthened, and the fuel conversion efficiencies improved without the drawbacks of exhaust emissions increment.

  • PDF

An Experimental Study on Spray Characteristics of Directly Injected Bio-Ethanol-Gasoline Blended Fuel By Varying Fuel Temperature (직접분사식 바이오 에탄올-가솔린 혼합연료의 연료온도에 따른 분무 특성에 관한 실험적 연구)

  • Lee, Seangwook;Park, Giyoung;Kim, Jongmin;Park, Bongkyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.636-642
    • /
    • 2014
  • As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.