• 제목/요약/키워드: fuel direct injection

검색결과 416건 처리시간 0.019초

Bluff Body 후류에 형성되는 확산화염의 보염특성에 관한 연구 (A study on the stabilization characteristics of the diffusion flame formed behind a bluff body)

  • 안진근;배윤영
    • 대한기계학회논문집
    • /
    • 제19권12호
    • /
    • pp.3344-3351
    • /
    • 1995
  • The stability of diffusion flame formed behind a bluff body with fuel injection slits was experimentally investigated in various fuel injection angles, fuel injection ratios, grids and extension ducts. The flame stability limits, temperature distributions and length of recirculation zones, direct photographs of flames were measured in order to discuss the stabilization mechanism of the diffusion flame. The results from this study are as follows. The fuel injection angle is an important factor in determining the flame stability. Stability limits can be improved by variety of the fuel injection ratio. When the grid and extension duct are set, stability characteristics are varied with the blockage ratios, grid intervals, and grid numbers. The recirculation zone not only serves as a steady ignition source of combustion stream but also governs the stabilization mechanism.

횡단공기류에서의 고압 가솔린 분사시 연료분무 특성 (Fuel-Spray Characteristics of High Pressure Gasoline Injection in Cross Flows)

  • 이석환;최재준;김성수;이상용;배충식
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.30-39
    • /
    • 2001
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced by the high pressure injector is of paramount importance in DISI(Direct Injection Spark Ignition) engines in that the primary atomization process must meet the requirement of quick and complete evaporation, mixing with air and combustion especially to prohibit the excessive HC emissions. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engine. The direct Mie scattered and shadowgraph images presented the macroscopic view of the liquid sprays and vapor fields. The velocity and particle size of fuel droplets were investigated by phase doppler anenometer(PDA) system. The processes of atomization and evaporation with a DISI injector were observed and consequently utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF

직접분사식 가솔린 엔진의 연소제어인자에 따른 희박연소 특성 연구 (A Study on the Lean Combustion Characteristics with Variation of Combustion Parameter in a Gasoline Direct Injection Engine)

  • 박철웅;오진우;김홍석
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.39-45
    • /
    • 2012
  • Today gasoline engines for vehicular application are not only faced with stringent emission regulation but also with increasing requirements to better fuel economy, while guaranteeing power density. The spray-guided type gasoline direct injection (GDI) engine has an advantage of improved thermal efficiency and lower harmful emissions. Centrally mounted high pressure injector and adjacent spark plug allow stable lean combustion due to the flexible mixture stratification. In the present study, the performance and emissions characteristics of developed spray-guided type GDI combustion system were evaluated at various excess air ratio conditions. The specific fuel consumption and nitrogen oxides ($NO_x$) emissions were reduced due to the achievement of stable lean combustion under flammability limit. Multiple injection strategy was not helpful to improve fuel consumption while further reduction of $NO_x$ emissions was possible.

SCCI 방법을 이용한 직분식 가솔린 엔진내의 압축비 및 흡기 온도 변화에 따른 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on the Combustion and Emission Characteristics According to the Variation of Compression Ratio and Intake Temperature Using Stratified Charge Compression Ignition in a Gasoline Direct Injection Engine)

  • 이창희;이기형;임경빈
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.538-545
    • /
    • 2006
  • Stratified charge compression ignition (SCCI) combustion, also known as HCCI(homogeneous charge compression ignition), offers the potential to improve fuel economy and reduce emission. In this study, SCCI combustion was studied in a single cylinder gasoline DI engine, with a direct injection system. We investigated the effects of air-fuel ratio, intake temperature and injection timing such as early injection and late injection on the attainable SCCI combustion region. Injection timing during the intake process was found to be an important parameter that affects the SCCI region width. We also find it. The effects of mixture stratification and fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

미산란 기법에 의한 고압 6공 연료분사기의 분무형상에 대한 실험적 연구 (Experimental Study on Spray Structure of a High Pressure 6-Hole Injector by Mie Scattering Technique)

  • 김성수
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.878-883
    • /
    • 2008
  • The spray characteristics of a high pressure 6-hole injector were examined in a single cylinder optical direct injection spark ignition (DISI) engine. The effects of injection timing, in-cylinder charge motion, fuel injection pressure and coolant temperature were investigated using the 2-dimensional Mie scattering technique. It was confirmed that the in-cylinder charge motion played a major role in the fuel spray distribution during the induction stroke while the propagation of fuel spray was restrained during the compression stroke by the increasing pressure and the upward moving piston. In additions, it was confirmed that the liquid fuel droplets existing at the sprays edges were vaporized by the increase of the coolant temperature.

폐식용유를 이용한 소형 디젤기관의 성능 (Performances of the Used Frying Oil on a Small Diesel Engine)

  • 김성태;정형길;김영복
    • Journal of Biosystems Engineering
    • /
    • 제26권3호
    • /
    • pp.209-220
    • /
    • 2001
  • This study was carried out to investigate the usability of the used frying oil, which was extracted from soybean, as one of the alternative fuel of a small diesel engine. For the experiment, NO. 2 diesel oil [D], used frying oil [UF], and their volumetric blends were applied and analysis of the properties and compositions of the experimental fuels were conducted. A four cycle diesel engine with single cylinder, water cooling system, maximum output 8.1 ㎾/2,200 rpm was selected and a direct injection chamber and a precombustion chamber were attached alternately. The results obtained were as follows: 1. Engine power (BHP) were increased from 4.13~4.27㎾ to 9.08~9.15㎾ for diesel oil, from 4.05~4.19㎾ to 8.44~8.92㎾ for UF, and from 4.01~4.48㎾ to 8.69~9.16㎾ for blend fuel, as the engine speed increased from 1,000 rpm to 2,200 rpm. The BHP in case of the direct combustion chamber were fluctuated higher than those of the pre-combustion chamber. 2. With the engine speed increased, torque of the engine were increased from 39.50~40.80 N.m to 42.89 N.m, then decreased to 39.44~39.77 N.m for diesel oil, and increased from 38.73~40.04 N.m to 40.12~40.82 N.m then decreased as 36.53~38.76 N.m for UF. Torque of the blend fuels were increased from 38.75~41.76 N.m to 40.47~42.89 N.m then decreased to 37.73~39.78 N.m. There is no significant difference of torque between the type of combustion chambers. 3. The specific fuel consumption of the UF was increased about 20 percent depending on the engine speed variations. And in case of direct injection chamber, about 12 percent lower fuel consumption was observed than that of precombustion chamber. 4. NOx emission of the UF was higher than that of diesel oil at above 1,800rpm of the engine speed. In case of the direct injection chamber, NOx emission was revealed higher about 59 percent than that of the precombustion chamber, depending on the range of the engine speeds. 5. Smoke emission was decreased in case of UF compared with diesel oil on direct injection chamber. When using precombustion chamber smoke emission was a little higher than that of the direct injection chamber were showed at the engine speed range. 6. At all the engine speed range, exhaust gas temperatures were decreased 2~3$^{\circ}C$ for UF used engine compared with those of the diesel oil. The exhaust gas temperature of the direct injection chamber was higher than that of the precombustion chamber by 72$^{\circ}C$. 7. Unburnt materials remained in the cylinder in case of the pre-combustion chamber was smaller and softer than that of the direct combustion chamber. 8. The feasibility of the blend fuel B-1 and B-2 were verified as a direct combustion chamber was attached to the diesel engine, with respect to the power performance of the engine.

  • PDF

바이오디젤유를 사용하는 직접분사식 디젤기관의 내구특성 (Durability Test of a Direct Injection Diesel Engine Using Biodiesel Fuel)

  • 유경현;오영택
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.32-38
    • /
    • 2004
  • To evaluate the durability of direct injection diesel engine using biodiesel fuel, a small D. I. diesel engine was operated on a blend(BDF 20) of 20% biodiesel fuel and 80% diesel fuel for 200 hours. Engine dynamometer test was performed at a load of 90% and a speed of 1900 rpm to monitor the engine performance and exhaust emissions. Engine performance parameters and exhaust emissions were sampled at 1 hour interval for analysis. The combustion maximum pressure and the crank angle at this maximum pressure as a combustion variation factor were considered to study the combustion characteristics of BDF 20 in diesel engine during durability test. As the results, the standard deviations and errors of combustion variation factors on BDF 20 were very little and combustion characteristics were very stable during the durability test. BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions with special increase of nitrogen oxides compared to diesel fuel. There was no also unusual change in engine oil composition from using BDF 20. Most of engine parts were clean and showed little wear, but soots were detected around the hole of fuel injector when BDF 20 was used in direct injection diesel engine for 200 hours.

The Effects of Chamber Temperature and Pressure on a GDI Spray Characteristics in a Constant Volume Chamber

  • Oh, Seun-Sung;Kim, Seong-Soo
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.186-192
    • /
    • 2014
  • The spray structures under the stratified and homogeneous charge condition of a gasoline direct injection were investigated in a visualized constant volume chamber. The chamber pressure was controlled from 0.1 MPa to 0.9 MPa by the high pressure nitrogen and the chamber temperatures of $25^{\circ}C$, $60^{\circ}C$ and $80^{\circ}C$ were controlled by the band type heater. The fuel, iso-octane was injected by a 6-hole injector with the pressures of 7 MPa and 12 MPa. From the experiments results, it is confirmed that at lower chamber pressure, the penetration length and spray angle are mainly affected by the chamber temperature with the vaporization of the fuel droplets and generated vortices at the end region of the spray. And at higher chamber pressure, the penetration lengths at the end of the injection were about 50~60% of that at lower chamber pressure regardless of the chamber temperature and the effect of fuel injection pressure is larger than that of the chamber temperature which results from larger penetration lengths at higher fuel injection pressure than at lower fuel injection pressure regardless of the chamber temperatures.

직접분사식 압축착화 디젤엔진의 분사시기 변화에 따른 연소 및 성능특성에 관한 연구 (A Study on the Combustion and Performance Characteristics in Compression Ignition CRDI Diesel Engine)

  • 김기복;김치원;윤창식
    • 한국산업융합학회 논문집
    • /
    • 제19권1호
    • /
    • pp.31-38
    • /
    • 2016
  • Since the oil shock of 1970's there was a strong upward tendency for the use of the high viscosity and poorer quality fuels. Therefore the misfiring engine occurs due to the decrease of quantity injected for lean burn and emission control in Compression Ignition Common Rail Direct Injection diesel engine. In this study, it is designed and used the test bed which is installed with fuel injector controller. In addition to equipped engine using CRDI by controlling the injection timing with mapping modulator, it has tested and analyzed the engine performance and combustion characteristics, as it is varied that they are the operating parameters: fuel injected quantity, engine speed and injection timing.

직접분사식 가솔린 엔진의 분사전략 변경 및 EGR 적용을 통한 배기저감에 관한 연구 (Study on Emission Reduction with Injection Strategy and Exhaust-Gas Recirculation in Gasoline Direct Injection Engine)

  • 박철웅;김홍석;우세종;김용래
    • 대한기계학회논문집B
    • /
    • 제36권3호
    • /
    • pp.335-342
    • /
    • 2012
  • 자동차배출가스는 이산화탄소($CO_2$)에 의한 지구온난화 및 탄화수소(HC)와 질소산화물($NO_x$)에 의한 오존 생성을 야기하는 등, 인체와 환경에 나쁜 영향을 미치기 때문에 이에 대한 관심이 증폭되고 있다. 가솔린 직접분사 (Gasoline Direct Injection; GDI)엔진은 디젤엔진과 같이 연소실내에 연료를 직접 공급하는 방식으로서 가솔린엔진의 취약점으로 지적되어 오던 높은 연료소비율 문제를 획기적으로 개선할 수 있는 기술로 평가되고 있다. 본 연구에서는 분무유도방식(Spray-guided type)의 GDI엔진을 이용하여 공기과잉률 2.0 이상의 초희박 연소를 통해 연료소비율을 개선하였다. 추가적인 연료소비율 개선 및 배출가스 저감을 위해 희박연소시 다단 분사전략과 Exhaust Gas Recirculation (EGR)을 적용하였다. 배출가스 수준과 운전성능을 평가하고 이를 배출가스 규제와 비교 검토함으로써 국내 관련기술 개발 방향 및 상용화 가능성에 대해 검토하고자 하였다.