• Title/Summary/Keyword: fuel delivery model

Search Result 10, Processing Time 0.027 seconds

Dynamic Simulation of Engine Torque for Hardware-in-the-loop Simulation (엔진 토크의 동적 시뮬레이션에 관한 연구)

  • 조한승;송해박;이종화;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.94-110
    • /
    • 1997
  • In the present study, a mean torque predictive model has been proposed and experimentally validated. It includes induction air mass model, fuel delivery model and mean production mode. Air induction and fuel delivery model considering dynamic behaviors of air induction and fuel delivery were proposed to predict the air-fuel ratio excursions under transient condition. Torque function model reflects thermal efficiency, volumetric efficiency, friction and effect of spark timing. In the spark timing model, knock limit and acceleration retard are included. Experiments were carried out to validate the simulation model for the step changes of throttle at constant engine speed. The results show reasonable agreements between simulation and experiment at fully warmed condition. Using this model, fueling strategies are varied with fast throttle open and it can predict air-fuel ratio excursion and IMEP.

  • PDF

Three Dimensional Simulation Model of Fuel Delivery Jet Pump (연료 송출용 제트펌프 3차원 전산해석 모델)

  • PARK, DAIN;YUN, JIN WON;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.308-314
    • /
    • 2017
  • Jet pump in automotive fuel tank module is used to deliver fuel to fuel pump so that the pump is operated without aeration in suction side. In this study, three dimensional simulation model of jet pump is developed to understand performance variation over design parameters. Performance of jet pump is also investigated experimentally in terms of operating pressures. The experimental data is used to verify the three dimensional simulation model of jet pump. Verification results show that the three dimensional simulation model of jet pump is about 1% error with experiment. The simulations are conducted in terms of throat ratio and primary flow induction angle. As the throat ratio is increased, the flux ratio is trade-off at 3 times of throat diameter. On the other hand, as primary flow induction angle is increased, vapor pressure inside the nozzle is decreased. In summary, the results show that liquid jet pump has to be optimized over design parameters. Additionally, high velocity of induced flow is able to evolve cavitation phenomena inside the jet pump.

Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage (수소동위원소 저장용 ZrCo용기의 급속 냉각 성능 평가)

  • Lee, Jungmin;Park, Jongchul;Koo, Daeseo;Chung, Dongyou;Yun, Sei-Hun;paek, Seungwoo;Chung, Hongsuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • The nuclear fuel cycle plant is composed of various subsystems such as a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea is sharing in the construction of the International Thermonuclear Experimental Reactor (ITER) fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the SDS. Hydrogen isotopes are the main fuel for nuclear fusion reactors. Metal hydrides offer a safe and convenient method for hydrogen isotope storage. The storage of hydrogen isotopes is carried out by absorption and desorption in a metal hydride bed. These reactions require heat removal and supply respectively. Accordingly, the rapid storage and delivery of hydrogen isotopes are enabled by a rapid cooling and heating of the metal hydride bed. In this study, we designed and manufactured a vertical-type hydrogen isotope storage bed, which is used to enhance the cooling performance. We present the experimental details of the cooling performances of the bed using various cooling parameters. We also present the modeling results to estimate the heat transport phenomena. We compared the cooling performance of the bed by testing different cooling modes, such as an isolation mode, a natural convection mode, and an outer jacket helium circulation mode. We found that helium circulation mode is the most effective which was confirmed in our model calculations. Thus we can expect a more efficient bed design by employing a forced helium circulation method for new beds.

Simulation of Fuel Injection System and Model of Spray Behavior in Liquefied Butane (액상부탄 분사시스템의 수치시뮬레이션 및 분무특성 예측)

  • Kim, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.24-33
    • /
    • 1998
  • The characteristics of liquefied butane spray are expected to be different from conventional diesel fuel spray, because a kind of flash boiling spray is expected when the back pressure is below the saturation vapor pressure of the butane(0.23MPa at $25^{\circ}C$). An accumulator type pintle injector and its fuel delivery system has been simulated in ruder to give injection pressure, needle lift and rate of fuel injected. The governing equation were solved by finite difference metho. The injection duration was controlled by solenoid valve. Spray behaviors such as a transient spray tip penetration, spray angle and SMD were calculated based on the empirical correlations in case that the back pressure is both above the vapor pressure of the butane and below that of butane. When the back preassure is below the vapor pressure of the fuel, conventional correlation is modified to represent the effect of flash boiling.

  • PDF

Effects of Working Fuel Temperature on Injection Characteristics of Bypass Type Piezo Injector (작동 연료온도가 Bypass type 피에조 인젝터의 분사 특성에 미치는 영향)

  • Cho, Insu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.66-72
    • /
    • 2019
  • Diesel vehicles suffer from poor starting and running problems at cold temperatures. Diesel vehicles have the characteristic that CO and PM are reduced or similarly discharged when going from low temperature to high temperature. In this study, a bypass type piezo injector for electronic control based common rail injection system was used. Numerical analysis using injector drive analysis model was performed to analyze injector drive and internal fuel flow characteristics according to fuel temperature change. The results show that the rate of density change due to the fuel temperature is proportional, and that the effect of the kinematic viscosity is relatively large between $-20^{\circ}C$ and $0^{\circ}C$. Comparing the results of temperature condition at $0^{\circ}C$ and $20^{\circ}C$, it is considered that the viscosity is more correlated with the needle displacement than the pressure chamber of the delivery chamber.

Design and Analysis of Spider Bionic Flow Field for Proton Exchange Membrane Fuel Cell

  • Jian Yao;Fayi Ya;Xuejian Pei
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.38-50
    • /
    • 2023
  • Proton exchange membrane fuel cell (PEMFC) is a portable and clean power generation device. The structural arrangement of the flow field has a significant influence on the delivery efficiency of PEMFC. In this article, a new bionic flow channel is designed based on the inspiration of a spider shape. The branch channel width and branch corner are studied as the focus, and its simulation is carried out by the method of computational fluid dynamics (CFD). The results show that when channel width/rib width and corner of the branch are 1.5 and 130° , respectively, it is the best numerical combination and the cell comprehensive performance is excellent. The final model using this numerical combination is compared with the traditional flow channel model to verify the advancement of this scheme.

Performance Computer Controller for fire Control Hovercraft (소방용 호버크래프트 성능 향상을 위한 컴퓨터 제어기)

  • Cho, Moon-Taek;Song, Ho-Bin;Kim, Young-Chun;Back, Dong-Hyun;Hong, Bong-Hwa;Joo, Hae-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2142-2143
    • /
    • 2011
  • Amphibious possible, and good fuel economy, so as leisure and transport has increased the use of hovercraft. Fire started in Korea, the prevalence is increasing in demand as the trend has been increasing steadily. In this paper, the hovercraft's forward and backward direction can be controlled in order to free the reverse bucket control system was developed. Control due to development by promoting the flow of air and turn right, turn left and easy to reverse the life-saving and stable at high speed, etc. has made possible the operation of hovercraft. To prove the validity of the proposed controller in Matlab simulation and the actual delivery at the firehouse, built into a model for the demonstration test was performed.

  • PDF

Computer Controller Design and Movement of Hovercraft Driving Apparatus (호버크래프트 추진장치의 컴퓨터 제어기 설계와 동작)

  • Baek, Dong-Hyun;Song, Ho-Bin;Cho, Moon-Tack
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.32-38
    • /
    • 2011
  • Amphibious possible, and good fuel economy, so as leisure and transport has increased the use of hovercraft. Fire started in Korea, the prevalence is increasing in demand as the trend has been increasing steadily. In this paper, the hovercraft's forward and backward direction can be controlled in order to free the reverse bucket control system was developed. Control due to development by promoting the flow of air and turn right, turn left and easy to reverse the life-saving and stable at high speed, etc. has made possible the operation of hovercraft. The controller for the stability and fast response Fuzzy-PID method was used. To prove the validity of the proposed controller in Matlab simulation and the actual delivery at the firehouse, built into a model for the demonstration test was performed.

On the Theoretical Solution and Application to Container Loading Problem using Normal Distribution Based Model (정규 분포 모델을 이용한 화물 적재 문제의 이론적 해법 도출 및 활용)

  • Seung Hwan Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.240-246
    • /
    • 2022
  • This paper introduces a container loading problem and proposes a theoretical approach that efficiently solves it. The problem is to determine a proper weight of products loaded on a container that is delivered by third party logistics (3PL) providers. When the company pre-loads products into a container, typically one or two days in advance of its delivery date, various truck weights of 3PL providers and unpredictability of the randomness make it difficult for the company to meet the total weight regulation. Such a randomness is mainly due to physical difference of trucks, fuel level, and personalized equipment/belongings, etc. This paper provides a theoretical methodology that uses historical shipping data to deal with the randomness. The problem is formulated as a stochastic optimization where the truck randomness is reflected by a theoretical distribution. The data analytics solution of the problem is derived, which can be easily applied in practice. Experiments using practical data reveal that the suggested approach results in a significant cost reduction, compared to a simple average heuristic method. This study provides new aspects of the container loading problem and the efficient solving approach, which can be widely applied in diverse industries using 3PL providers.

A Stochastic Study for the Emergency Treatment of Carbon Monoxide Poisoning in Korea (일산화탄소중독(一酸化炭素中毒)의 진료대책(診療對策) 수립(樹立)을 위한 추계학적(推計學的) 연구(硏究))

  • Kim, Yong-Ik;Yun, Dork-Ro;Shin, Young-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.16 no.1
    • /
    • pp.135-152
    • /
    • 1983
  • Emergency medical service is an important part of the health care delivery system, and the optimal allocation of resources and their efficient utilization are essentially demanded. Since these conditions are the prerequisite to prompt treatment which, in turn, will be crucial for life saving and in reducing the undesirable sequelae of the event. This study, taking the hyperbaric chamber for carbon monoxide poisoning as an example, is to develop a stochastic approach for solving the problems of optimal allocation of such emergency medical facility in Korea. The hyperbaric chamber, in Korea, is used almost exclusively for the treatment of acute carbon monoxide poisoning, most of which occur at home, since the coal briquette is used as domestic fuel by 69.6 per cent of the Korean population. The annual incidence rate of the comatous and fatal carbon monoxide poisoning is estimated at 45.5 per 10,000 of coal briquette-using population. It offers a serious public health problem and occupies a large portion of the emergency outpatients, especially in the winter season. The requirement of hyperbaric chambers can be calculated by setting the level of the annual queueing rate, which is here defined as the proportion of the annual number of the queued patients among the annual number of the total patients. The rate is determined by the size of the coal briquette-using population which generate a certain number of carbon monoxide poisoning patients in terms of the annual incidence rate, and the number of hyperbaric chambers per hospital to which the patients are sent, assuming that there is no referral of the patients among hospitals. The queueing occurs due to the conflicting events of the 'arrival' of the patients and the 'service' of the hyperbaric chambers. Here, we can assume that the length of the service time of hyperbaric chambers is fixed at sixty minutes, and the service discipline is based on 'first come, first served'. The arrival pattern of the carbon monoxide poisoning is relatively unique, because it usually occurs while the people are in bed. Diurnal variation of the carbon monoxide poisoning can hardly be formulated mathematically, so empirical cumulative distribution of the probability of the hourly arrival of the patients was used for Monte Carlo simulation to calculate the probability of queueing by the number of the patients per day, for the cases of one, two or three hyperbaric chambers assumed to be available per hospital. Incidence of the carbon monoxide poisoning also has strong seasonal variation, because of the four distinctive seasons in Korea. So the number of the patients per day could not be assumed to be distributed according to the Poisson distribution. Testing the fitness of various distributions of rare event, it turned out to be that the daily distribution of the carbon monoxide poisoning fits well to the Polya-Eggenberger distribution. With this model, we could forecast the number of the poisonings per day by the size of the coal-briquette using population. By combining the probability of queueing by the number of patients per day, and the probability of the number of patients per day in a year, we can estimate the number of the queued patients and the number of the patients in a year by the number of hyperbaric chamber per hospital and by the size of coal briquette-using population. Setting 5 per cent as the annual queueing rate, the required number of hyperbaric chambers was calculated for each province and for the whole country, in the cases of 25, 50, 75 and 100 per cent of the treatment rate which stand for the rate of the patients treated by hyperbaric chamber among the patients who are to be treated. Findings of the study were as follows. 1. Probability of the number of patients per day follows Polya-Eggenberger distribution. $$P(X=\gamma)=\frac{\Pi\limits_{k=1}^\gamma[m+(K-1)\times10.86]}{\gamma!}\times11.86^{-{(\frac{m}{10.86}+\gamma)}}$$ when$${\gamma}=1,2,...,n$$$$P(X=0)=11.86^{-(m/10.86)}$$ when $${\gamma}=0$$ Hourly arrival pattern of the patients turned out to be bimodal, the large peak was observed in $7 : 00{\sim}8 : 00$ a.m., and the small peak in $11 : 00{\sim}12 : 00$ p.m. 2. In the cases of only one or two hyperbaric chambers installed per hospital, the annual queueing rate will be at the level of more than 5 per cent. Only in case of three chambers, however, the rate will reach 5 per cent when the average number of the patients per day is 0.481. 3. According to the results above, a hospital equipped with three hyperbaric chambers will be able to serve 166,485, 83,242, 55,495 and 41,620 of population, when the treatmet rate are 25, 50, 75 and 100 per cent. 4. The required number of hyperbaric chambers are estimated at 483, 963, 1,441 and 1,923 when the treatment rate are taken as 25, 50, 75 and 100 per cent. Therefore, the shortage are respectively turned out to be 312, 791. 1,270 and 1,752. The author believes that the methodology developed in this study will also be applicable to the problems of resource allocation for the other kinds of the emergency medical facilities.

  • PDF