• Title/Summary/Keyword: fuel cell vehicles

Search Result 249, Processing Time 0.023 seconds

Modeling and an Efficient Com bined Control Strategy for Fuel Cell Electric Vehicles

  • Lee, Nam-Su;Shim, Seong-Yong;Ahn, Hyun-Sik;Choi, Joo-Yeop;Choy, Ick;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1629-1633
    • /
    • 2004
  • In this paper, we first implement the simulation environment to investigate the efficient control method of a Fuel Cell Electric Vehicle (FCEV) system with battery. The subsystems of a FCEV including the fuel cell system, the electric motor (including the power electronics) and the tansmission (reduction gear), and the auxiliary power source (battery) are mathematically fomulated and coded using the Matlab/Simulink software. Some examples are given to show the capabilities of the modeled system and d a basic control strategy is examined for the economic energy distribution between the fuel cell and the auxiliary power source. It is illustrated by simulations that the actual vehicle velocity follows the given desired velocity pattern while both SOC control and power distribution control are being performed.

  • PDF

Basic Design of Phosphoric Acid Fuel Cell/Battery Hybrid Vehicle (인산형 연료전지/축전지 복합 구동 자동차 개념 설계)

  • Lee, Bong-Do;Lee, Won-Yong;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.59-61
    • /
    • 1996
  • Fuel cell systems offer high efficiencies for energy conservation for transportation application. In addition, they can operate on alcohols and alternative fuels, while producing little or no noxious emissions. The goal of the fuel cell in transportation should be research and commercialization of fuel cell vehicles as economic competitors for internal combustion engine vehicle. The objective of the present study is to analyze feasibility of the fuel cell/battery combination as a power source for a bus.

  • PDF

An Economic Feasibility Analysis of a Hydrogen Fuel-Cell Vehicle Considering GHG (GHG를 고려한 수소연료전지 자동차의 경제성 분석)

  • Yang, Moon-Hee;Gim, Bong-Jin;Kim, Jong-Wook
    • New & Renewable Energy
    • /
    • v.1 no.3 s.3
    • /
    • pp.42-50
    • /
    • 2005
  • This paper deals with the economic feasibility model and analysis of a hydrogen fuel-cell vehicle [FCV] against two similar types of non-business vehicles fueled with gasoline [GV] and diesel [DV] considering greenhouse gas [GHG]. Considering the price of vehicles and annual operating cost, we build a classical economic feasibility model. Since the economic feasibility could be affected by many input factors such as the prices of vehicles, the price of fuels, annual driving distance and so on, we estimate the average future values of input factors, which is defined as "the average case". Based on the average case, we assess the representative economic feasibility of a FCV with/without GHG, and by changing various annual driving distances, we assess its economy in terms of net-present value, internal rate of return, and payback period. In addition, we make some sensitivity analysis of its economic feasibility by changing the values of the critical input factors one at time. Based on the average case, it turns out that the consumer of a FCV could save 25,000 won/year for a GV, but the consumer could pay 120,000 won/year more for a DV. This indicates that gasoline vehicles could be replaced gradually by FCVs in Korean market which might be formed by those consumers driving annually more than approximately 14,800 km. As the results of our sensitivity analysis, it turns out that a FCV is no more economical if the difference of the prices between FCV and GV is more than 10,130,000 won or the price of hydrogen fuel could be more than 5,136 won/kg.

  • PDF

Air Pollutant Reduction Effect on Road Mobility in Hydrogen Economy Era (수소경제 활성화 로드맵 달성에 따른 교통 부문의 대기오염원 저감 효과 분석)

  • KIM, JUNGHWA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.522-529
    • /
    • 2020
  • This study evaluated the effect of improving the atmospheric environment based on the premise that the supply of hydrogen fuel cell vehicles (HFCV) will be achieved as many as the number of vehicles presented in the hydrogen economy activation roadmap announced by the Korean government in January 2019. The HFCV supply target (2.7 million passenger cars) suggested in the hydrogen economy revitalization roadmap was logically allocated to the five major metropolitan areas in Korea. Air pollution damage costs by region were calculated by reflecting the basic unit of damage cost to the estimated air pollutant emissions. As a result, it was confirmed that the benefits per unit of some cities in Gyeonggi-do were derived more than major cities in the metropolitan area.

Development of Accident Scenarios for Hydrogen Refueling Station and Fuel Cell Vehicle (수소충전소 및 수소자동차의 사고 시나리오 개발)

  • Byoungjik Park;Yangkyun Kim;Ohk Kun Lim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • The registration rate of eco-friendly vehicles, such as hydrogen vehicles, is increasing rapidly, however, few first responders have experienced related accidents. Accident scenarios at hydrogen refueling stations and hydrogen vehicles on a road were investigated, and the relative importance of each scenario was analyzed using AHP analysis. Leakage, jet flame, and explosion that occurred inside and outside the hydrogen refueling station were reviewed, and the hydrogen gas explosion in the compartment showed the highest importance value. In case of the hydrogen vehicle, traffic accident statistics and actual accidents were used. It was analyzed that the hydrogen vessel explosion on the road due to the failure of TPRD and the leakage in the underground parking area were difficult to respond. The developed accident scenarios are expected to be used for first responder training.

Lithium Air Battery: Alternate Energy Resource for the Future

  • Zahoor, Awan;Christy, Maria;Hwang, Yun-Ju;Nahm, Kee-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-23
    • /
    • 2012
  • Increasing demand of energy, the depletion of fossil fuel reserves, energy security and the climate change have forced us to look upon alternate energy resources. For today's electric vehicles that run on lithium-ion batteries, one of the biggest downsides is the limited range between recharging. Over the past several years, researchers have been working on lithium-air battery. These batteries could significantly increase the range of electric vehicles due to their high energy density, which could theoretically be equal to the energy density of gasoline. Li-air batteries are potentially viable ultra-high energy density chemical power sources, which could potentially offer specific energies up to 3000 $Whkg^{-1}$ being rechargeable. This paper provides a review on Lithium air battery as alternate energy resource for the future.

Effects of environmental temperature on the performance of direct methanol fuel cell for vehicles (외부온도가 수송용 메탄올연료전지 성능에 미치는 영향)

  • Han, Chang-Hwa;Jung, Dae-Seung;Choi, Ji-Sun;Han, Sang-Hun;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.176-179
    • /
    • 2009
  • The performance of direct methanol fuel cells is affected by operating conditions such as, methanol feeding temperatures, methanol concentrations, and methanol flow rates during the operation in different environmental conditions. In this study, effects of the environmental temperature on performance of direct methanol fuel cells have been investigated in order to test a applicability of direct methanol fuel cell to the vehicle. The environmental temperature (ET) was varied from $-20^{\circ}C$ to $+30^{\circ}C$. The inside fuel cell temperature (CT) during test at various operating conditions was monitored and the performance of fuel cell was measured in the I-V polarization curve. With increasing the ET, the performance of the fuel cell was significantly improved and the CT also almost linearly increased. However, at below $0^{\circ}C$ ET, the DMFC showed very poor performance and needed to control CT or methanol feeding temperature (MFT), methanol flow rate(MFR) to obtain enough power of the vehicle.

  • PDF

Manufacturing Process Improvement of Electrode for PEMFC (공정 효율 향상을 위한 연료전지전극 개발)

  • PARK, SEOK JUNG;LEE, JAE SEUNG;LEE, KI SUB;ROH, BUM WOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.547-553
    • /
    • 2015
  • For commercialization of fuel cell electric vehicles, one of the key objectives is to reduce cost of full stack assembly. Regarding Membrane Electrode Assembly, the major issue is to improve fuel cell activation process in the initial Hydrogen Oxidation Reaction and Oxygen Reduction Reaction. In this research, the VD (Vacuum Drying) process has been developed for improvement of activation process. The VD condition is developed by controlling the temperature and degree of vacuum to remove the remaining solvent of electrode. Consequently, the electrode applied to VD process showed the low characteristics such as 3.5% of remaining solvent content and the improved efficiency such as 15% of activation process speed.

Real-time and Power Hardware-in-the-loop Simulation of PEM Fuel Cell Stack System

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.202-210
    • /
    • 2011
  • Polymer electrolyte membrane (PEM) fuel cell is one of the popular renewable energy sources and widely used in commercial medium power areas from portable electronic devices to electric vehicles. In addition, the increased integration of the PEM fuel cell with power electronics, dynamic loads, and control systems requires accurate electrical models and simulation methods to emulate their electrical behaviors. Advancement in parallel computation techniques, various real-time simulation tools, and smart power hardware have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds up advancements of optimized model constructions for a fuel cell stack system on a real-time simulator in the view points of improving dynamic model accuracy and boosting computation speed. In addition, several considerations for a power hardware-in-the-loop (PHIL) simulation are provided to electrically emulate the PEM fuel cell stack system with power facilities. The effectiveness of the proposed PHIL simulation method developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator and a programmable power supply is verified using experimental results of the proposed PHIL simulation system with a Ballard Nexa fuel cell stack.

Development of A Simulation Environment for An Efficient Combined Control Methodology of Fuel Cell Hybrid Electric Vehicles (연료전지 자동차 시스템의 효율적인 연계운전방법 개발을 위한 시뮬레이션 환경 구축)

  • Lee, Nam-Su;Shim, Seong-Yong;Ahn, Hyun-Sik;Kim, Do-Hyun;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2367-2369
    • /
    • 2004
  • It is well known that an indirect methanol based fuel cell system imposes a performance limitation on the fuel cell electric vehicle (FCEV) due to the reformer lag. An optional battery system can be used together with fuel cell to improve this performance limitation and it is called a fuel cell hybrid electric vehicle (FCHEV) this paper first describes the configuration of FCHEV with explanation of the energy flow between subsystems. Mathematical modeling of each subsystem such as a fuel cell system, a battery system, a driving motor with the transmission are formulated and coded using Matlab/simulink software. It is illustrated by simulation results that fuel cell modeling yields appropriate stack voltage in order to get the required current quantity with varying hydrogen flow.

  • PDF