• Title/Summary/Keyword: fuel cell vehicles

Search Result 249, Processing Time 0.027 seconds

Research of the user oriented interior design for FRT (FRT차량의 사용자중심적인 실내디자인 연구)

  • Kim Sang-Joong;Kim Seong-Nam
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.455-460
    • /
    • 2004
  • The Fuel cell Rubber tired Train (FRT), which is now getting the attention as the next generation vehicle with its environment-friendliness, is the transportation for smooth connections of city traffic. It is the revival of the surface-car system with its revaluation of the function and technological development. Accordingly, fixed time operation and high speed driving became possible. FRT is operated together with other vehicles on the regular drive way. While this vehicle can solve the problem of traffic congestion in the urban area, it also can be cost-effective when it is compared to the cost of subway construction. It is also designed to minimize the underground or elevated traffic lane, to introduce the new construction technology, to reduce a term of works, and to cut down the operation cost by unmanned automatic driving system. Furthermore, it is considered as the alternative measure of other transportation due to its potential for the ecological way of speed improvement and the accessability to the disabled, elderly and children by developing the vehicle with folding steps or by building the high boarding platforms. In this research, I concentrated on the user oriented interior design of the FRT to make it passenger-friendly and safe in order to maximize the utilization of the vehicle so that all users including wheelchaired, user with baby carriage, elderly and children can conveniently use this vehicle.

  • PDF

Analysis of Costs for a Hydrogen Refueling Station in Korea (한국 수소 충전소 건설의 경제성 분석)

  • KANG, BYOUNGWOO;KIM, TAEHYUN;LEE, TAECKHONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.256-263
    • /
    • 2016
  • As the hydrogen era comes near future, hydrogen fuel cell vehicles are core of hydrogen economy. Until now, Korea has 17 hydrogen refueling stations but 9 hydrogen refueling stations have been retired already and 8 hydrogen refueling stations are still running. With a limited number of hydrogen refueling stations, it is very difficult to get scientific data for the economy of hydrogen refueling stations in Korea. Thus, based on NREL(National Renewable Energy Laboratory) study, we analyzed most recent data for the construction of hydrogen refueling stations in one specific site in Korea. The cost comparison data between Korea and USA shows 14% difference, saying higher costs of Korea. Korea looks 5 years delay compared to USA. This data will be an important tool for the investment from every industrial parties.

A Study on the Metal Wire for Hoop Wrapping of Type 2 High Pressure Tank (Type 2 고압용기 권선용 금속선재에 관한 연구)

  • HAN, JINMOOK;CHOI, SOOKWANG;LEE, SUNGHEE;CHO, KYUNGCHUL;HWANG, CHULMIN;JUNG, YOUNGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.338-346
    • /
    • 2019
  • During last years, hydrogen refueling infrastructure test and devices research for hydrogen station presented a significant growth consisting of the commercialization of fuel cell electric vehicles (FCEVs). However, we still have many challenges for making commercial hydrogen stations such as increased safety and cost reduction. This study demonstrates the low cost hydrogen storage tank (type 2) and effective winding method for high pressure hydrogen storage. We use numerical analysis to verify stress changes inside the wire according to the winding condition. Also liner size, winding wire size and wire tension were studied for the safety and cost down. Results show that the stress of winding wire decreased with increased winding angle and increased the liner diameter. On the other hand, the stress of winding wire increased according to the increased wire thickness and tension.

A Numerical Analysis of Pressure Distribution and Pressure Drop in Receptacle for Hydrogen Charging System (수소 충전 시스템용 리셉터클의 내부 압력 분포와 압력 강하에 관한 수치적 연구)

  • YUANGANG WANG;SEUNGHYEOK LEE;CHAE HOON SOHN;SEDONG LEE;HYUNBOK LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.497-504
    • /
    • 2023
  • This study analyzes pressure distribution and pressure drop in the receptacle used in charging system of hydrogen fuel cell vehicles. The objective is to minimize receptacle-induced pressure drop by redesigning internal flow channels. Through numerical simulations, three receptacle variants are compared with a baseline case. Results show reduced pressure drop in the filter section. However, the check valve section exhibits higher pressure drop, requiring further improvement. By increasing throat diameter, pressure drop is decreased by 28% between inlet and outlet of the receptacle. This study shows the relationship between dynamic pressure and pressure drop, providing a guideline for receptacle performance optimization. The redesigned receptacle offers potential for enhancing hydrogen charging efficiency.

Generation of Hydrogen from Hydrolysis Reaction of NaBH4 Using Fresh Water (담수 사용 NaBH4 가수 분해반응에 의한 수소발생)

  • Oh, Sohyeong;Yoo, Donggeun;Kim, Taeho;Kim, Ikgyun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.503-507
    • /
    • 2021
  • Sodium borohydride, NaBH4, has many advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFC). When PEMFC is used outdoors as a transport type, it is economical to hydrolyze NaBH4 using fresh water instead of distilled water. Therefore, in this study, hydrogen was generated using fresh water instead of distilled water during the NaBH4 hydrolysis process. The properties of NaBH4 hydrolysis were studied using an activated carbon-supported Co-P-B/C catalyst. Fresh water did not generate tetrahydrate during the NaBH4 hydrolysis process, and distilled water produced tetrahydrate by-products, which consumed a lot of water during the hydrolysis process, indicating that at the end of the reaction at a high concentration of 25% or more of NaBH4, dry by-products and unreacted NaBH4 remained. As a result, when fresh water was used, the hydrogen yield and hydrogen generation rate were higher than that of distilled water at a high concentration of 25% or more of NaBH4, indicating that it is suitable for use in transport-type fuel cells such as unmanned aerial vehicles.

A basic study for explosion pressure prediction of hydrogen fuel vehicle hydrogen tanks in underground parking lot (지하주차장 수소연료차 수소탱크 폭발 압력 예측을 위한 기초 연구)

  • Lee, Ho-Hyung;Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Hu-Yeong;Kwon, Oh-Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2021
  • Amid growing global damage due to abnormal weather caused by global warming, the introduction of eco-friendly cars is accelerating to reduce greenhouse gas emissions from internal combustion engines. Accordingly, many studies are being conducted in each country to prepare for the explosion of hydrogen fuel in semi-closed spaces such as tunnels and underground parking lots to ensure the safety of hydrogen-electric vehicles. As a result of predicting the explosion pressure of the hydrogen tank using the equivalent TNT model, it was found to be about 1.12 times and 2.30 times higher at a height of 1.5 meters, respectively, based on the case of 52 liters of hydrogen capacity. A review of the impact on the human body and buildings by converting the predicted maximum explosive pressure into the amount of impact predicted that all predicted values would result in lung damage or severe partial destruction. The predicted degree of damage was applied only by converting the amount of impact caused by the explosion, and considering the additional damage caused by the explosion, it is believed that the actual damage will increase further and safety and disaster prevention measures should be taken.

Stability Analysis of FCHEV Energy System Using Frequency Decoupling Control Method

  • Dai, Peng;Sun, Weinan;Xie, Houqing;Lv, Yan;Han, Zhonghui
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.490-500
    • /
    • 2017
  • Fuel cell (FC) is a promising power supply in electric vehicles (EV); however, it has poor dynamic performance and short service life. To address these shortcomings, a super capacitor (SC) is adopted as an auxiliary power supply. In this study, the frequency decoupling control method is used in electric vehicle energy system. High-frequency and low-frequency demand power is provided by SC and FC, respectively, which makes full use of two power supplies. Simultaneously, the energy system still has rapidity and reliability. The distributed power system (DPS) of EV requires DC-DC converters to achieve the desired voltage. The stability of cascaded converters must be assessed. Impedance-based methods are effective in the stability analysis of DPS. In this study, closed-loop impedances of interleaved half-bridge DC-DC converter and phase-shifted full-bridge DC-DC converter based on the frequency decoupling control method are derived. The closed-loop impedance of an inverter for permanent magnet synchronous motor based on space vector modulation control method is also derived. An improved Middlebrook criterion is used to assess and adjust the stability of the energy system. A theoretical analysis and simulation test are provided to demonstrate the feasibility of the energy management system and the control method.

A study on the comparison of the performance of a heat pump system with air and water heat sources (공기열원 및 수열원을 이용한 열펌프 시스템의 성능특성에 관한 연구)

  • Ko, Won-Bin;Park, Youn-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.563-568
    • /
    • 2016
  • In this study, experiments were conducted to evaluate the performance of a heat pump system. A heat pump system with an air as heat source is adapted as reference. The developed system uses a plate heat exchanger an evaporator to absorb heat from a stack of fuel cell driven electric vehicles. Hence, the system functions as a water source heat pump system. The results indicated that the; power consumption increased with the rotational speed of the compressor. A system performance($COP_h$) of 2.03 at an electronic expansion valve(EEV) openings of 25% and a compressor speed of 1200 rpm was observed in the reference system. However, at the same compressor speed, the $COP_h$ of the water source heat pump system corresponded to 9.42 at an EEV openings of 75%. It was found that the water source heat pump system exhibited the highest performance at a water temperature of $50^{\circ}C$.

A Study on Generalized Output Capacitor Ripple Current Equation of Interleaved Boost Converter (인터리브드 부스트 컨버터에 대한 일반화된 출력 커패시터 리플전류 수식에 관한 연구)

  • Jung, Yong-Chae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1429-1435
    • /
    • 2012
  • DC-DC converter commonly used in photovoltaic systems, fuel cell systems and electric vehicles is a boost converter. The interleaved boost converter, connected in parallel by several boost converters and operated by the phase difference to reduce the input and output current ripple, has been widely used in recent years. Because of small input and output current ripples, the circuit can reduce the size of the input and output capacitors. Thus, instead of conventional electrolytic capacitor, the film capacitor with high reliability can be used and this is the life and reliability of the entire system can be improved. In this paper, the output current ripple formulas of the multi-stage interleaved boost converter are derived, and the characteristics in accordance with duty are found out. In order to verify the abovementioned contents, the derived results will make a comparison with the calculated values by using PSIM tool.

JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION : GTHTR300C

  • Kunitomi, Kazuhiko;Yan, Xing;Nishihara, Tetsuo;Sakaba, Nariaki;Mouri, Tomoaki
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.9-20
    • /
    • 2007
  • Design study on the Gas Turbine High Temperature Reactor 300-Cogeneration (GTHTR300C) aiming at producing both electricity by a gas turbine and hydrogen by a thermochemical water splitting method (IS process method) has been conducted. It is expected to be one of the most attractive systems to provide hydrogen for fuel cell vehicles after 2030. The GTHTR300C employs a block type Very High Temperature Reactor (VHTR) with thermal power of 600MW and outlet coolant temperature of $950^{\circ}C$. The intermediate heat exchanger (IHX) and the gas turbine are arranged in series in the primary circuit. The IHX transfers the heat of 170MW to the secondary system used for hydrogen production. The balance of the reactor thermal power is used for electricity generation. The GTHTR300C is designed based on the existing technologies of the High Temperature Engineering Test Reactor (HTTR) and helium turbine power conversion and on the technologies whose development have been well under way for IS hydrogen production process so as to minimize cost and risk of deployment. This paper describes the original design features focusing on the plant layout and plant cycle of the GTHTR300C together with present development status of the GTHTR300, IHX, etc. Also, the advantage of the GTHTR300C is presented.