• Title/Summary/Keyword: fuel cell system design

Search Result 362, Processing Time 0.035 seconds

A Study on the Evaporator Shape for the Heat Transfer Performance of Fuel Cell Reformer (연료전지 개질기용 증발기 열교환 성능을 위한 증발기 형상에 관한 연구)

  • Suh, Ho-Cheol;Kim, Kyu-Jun;Noh, Hyung-Chul;Park, Kyoung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.108-114
    • /
    • 2011
  • Steam reformer was organized with steam reforming process and CO removing process. The steam reforming process needed high temperature, 600~900 $^{\circ}C$, for catalytic-reaction which was extract of hydrogen from steam and hydrocarbon. The effects of the evaporator configuration on its heat transfer characteristics were investigated both experimentally and numerically to pursue the miniaturization. In this study, three configurations were considered where the different structures were tested; empty, embossing and mesh filled. For the comparison of heat transfer performance of shape evaporator disk, numerical analysis using SC-Tetra code and experiment were carried out. In case of reformer system design, it should be considered heat transfer rate, differential pressure and fluid flow direction.

Structural Optimization of Gas-to-gas Membrane Humidifier for Fuel Cell Vehicle (수송용 연료전지 시스템 적용을 위한 기체-기체 막가습기 구조 최적화)

  • Lee, Moo-Seok;Kim, Kyoung-Ju;Shin, Yong-Cheol;Kim, Dong-Hyun;Seo, Sang-Hoon;Kim, Hyun-Yoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2010
  • In this study, the structural analysis was performed to optimize the membrane humidifier with hollow fiber membrane for polymer electrolyte membrane fuel cell system. The main design factors were considered by evaluating the humidifying performance according to various structural parameters such as packing density and length. The effects of operation conditions of membrane humidifier were also elucidated experimentally. Results imply that there are optimum points for the packing density and length of humidifier. It was also found that among operation conditions, relative humidity of wet exhaust gas and temperature of dry inlet gas have major effects on the humidifying performance.

DC Micro-Grid Operational Analysis with a Detailed Simulation Model for Distributed Generation

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon;Jeong, Yu-Seok;Yang, Hyo-Sik;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.350-359
    • /
    • 2011
  • This paper describes the operational analysis results of a DC micro-grid using a detailed model of distributed generation. A detailed model of wind power generation, photo-voltaic generation and fuel cell generation was implemented with an userdefined model created with PSCAD/EMTDC software and coded in C-language. The operational analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by a built-in model and the controller is modeled by an user-defined model that is also coded in C-language. Various simulation results confirm that a DC micro-grid can operate without any problems in both the grid-tied mode and in the islanded mode. The operational analysis results confirm that the DC micro-grid makes it feasible to provide power to the load stably. It can also be utilized to develop an actual system design.

An Evaluation Model for Increasing Convenience of the Interior of FRT (궤도차량 실내디자인의 편의성 증대를 위한 평가 모형)

  • Jin Mi-Ja;Han Suk-Woo;Chang Se-Ky;Yoon Hee-Taek
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.269-273
    • /
    • 2005
  • Since adding design elements to train manufacturing technologies creates addition of high value, it is necessary to develop design for FRT with increased convenience of transportation by rail, which is a new paradigm. Therefore, an evaluation model for increasing convenience of the interior of FRT should draw the requirements of such design and their importance and supply logical basis for setting standards of establishing convenience of system and evaluating and measuring them. In order to evaluate design elements such as interior layout and arrangement of facilities, the model, of which commonness and subjectivity have been verified, should be presented. In consequence, this study going to more concretely focus on new values and sensitive technologies, application of availability and visual communication.

  • PDF

Rotordynamic design of a turbogenerator supported by air foil bearings (공기포일베어링에 지지된 터보제너레이터의 회전체동역학적 설계)

  • Kim, Y.C.;An, K.Y.;Park, M.R.;Park, J.Y.;Choi, B.S.;Lee, A.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.271-276
    • /
    • 2006
  • This paper shows the rotordynamic characteristics of a turbo-generator for a BOP of a fuel cell system. The rotor-bearing system consists of magnetic shaft and compressor-turbine shaft, and the two shafts are connected by spline coupling and supported by oil free air foil bearing. Preliminary design according to several parameter is considered in detail. Static and dynamic characteristics of the AFB are estimated by the soft elasto-hydrodynamic analysis technique and the perturbation method. The results of the natural frequencies, mode shape, and unbalance response analysis are presented.

  • PDF

Scenario-based Design and Life Cycle Cost Analysis of Energy Supply System for Transportation Sector (도로운송부문용 에너지 공급 시스템 설계 및 경제성평가)

  • Han, Seulki;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.164-173
    • /
    • 2015
  • This study aims to design energy supply systems from various energy sources for transportation sectors and comparatively analyze the life cycle cost of different scenario-based systems. For components of the proposed energy supply system, we consider a typical oil refinery, byproduct hydrogen system, renewable energy source (RES)-based electric generation system and existing electricity grid. We also include three types of vehicles in transportation sector such as internal combustion engine vehicle (ICEV), electric vehicle (EV), fuel cell vehicle (FCV). We then develop various energy supply scenarios which consist of such components and evaluate the economic performance of different systems from the viewpoint of life cycle cost. Finally we illustrate the applicability of the proposed framework by conducting the design problem of energy supply systems of Jeju, Korea. As the results of life cycle cost analysis, EV fueled by electricity from grid is the most economically feasible. In addition, we identify key parameters to contribute the total life cycle cost such as fuel cost, vehicle cost, infra cost and maintenance cost using sensitivity analysis.

Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code

  • Noori-Kalkhoran, Omid;Shirani, Amir Saied;Ahangari, Rohollah
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1140-1153
    • /
    • 2016
  • Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results.

The Effect of Mixing Region in Mixed Multiple Serpentine Flow-field to PEMFC Performance (혼합 다채널 사형 유로의 혼합영역이 PEMFC 성능에 미치는 영향)

  • Lee, Ji-Hong;Lee, Myeong-Yong;Kim, Hun-Ju;Lee, Sang-Seok;Lee, Do-Hyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.265-273
    • /
    • 2009
  • Proton Exchange Membrane Fuel Cell (PEMFC) has low operating temperature and high efficiency. And PEMFC consists of many components as bipolar plate, gas diffusion layer, membrane etc.. Flow-field in bipolar plate roles path for transporting reactants to membrane. Therefore a design of flow-field has an effect on PEMFC's performance. In this study, Computational Fluid Dynamics (CFD) simulations were performed for comparing mixed multiple serpentine (MMS) flow-field and multiple serpentine (MS) flow-field. And we studied an effect according to change mixing region design in MMS flow-field. Finally the applicability of results is verified by performing CFD simulation about fixed MMS flow-field which is combined good designs.

Development and Performance Tests of the Bridge Transported Servo Manipulator System for Remote Maintenance Jobs in a Hotcell (핫셀내 원격유지보수 작업을 위한 천정이동 서보 매니퓰레이터 시스템의 개발 및 성능테스트)

  • Jin Jae-hyun;Park Byung-suk;Ko Byung-seung;Yoon Jis-up;Jung Ki-Jung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.365-376
    • /
    • 2005
  • A prototype of the Bridge Transported Servo Manipulator (BTSM) system has been developed to do operation and maintenance jobs remotely in a hot cell. The system consists of a telescopic transporter, a slave arm, a master arm, and a control system. In this paper, the system is introduced and several performance test results are presented. The results have been used to design an upgraded system that will be used during demonstrations of the advanced spent fuel conditioning process.

  • PDF

Development of Economic Evaluation Solution and Power Prediction of Renewable Energy System (신재생에너지 발전 출력 예측과 경제성 종합평가 기술개발)

  • Jeoune, Dae-Seong;Kim, Jin-Young;Kim, Hyun-Goo;Kim, Jonghyun;Youm, Carl;Shin, Ki-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.93-112
    • /
    • 2019
  • In this paper, a very new web-based software for renewable energy system (RES) design and economic evaluation was introduced. This solution would provide the precise RES estimation service including not only photovoltaic (PV), wind turbine (WT) and fuel cell (FC) individually but also energy storage system (ESS) as combined forms with PV or WT. The three reasons why we ought to develop it are: First, the standardized tool suitable to the domestic environment for estimating power generation from RES facilities and economic evaluation is required. Secondly, the standardized tool is needed to spread domestic RES supply policy and to promote the new industry in the micro-grid field. The last, the reliability of economic evaluation should be enhanced more for new facilities. To achieve those aims, the weather database of one hundred locations have established and the RES facility database has also constructed. For the energy management, mathematical models for PV, WT, ESS and FC were developed. As a final phase, the analytical process to evaluate economics has performed with field data verification.