• 제목/요약/키워드: fuel cell system design

검색결과 362건 처리시간 0.023초

Hybrid Power Management System Using Fuel Cells and Batteries

  • Kim, Jae Min;Oh, Jin Seok
    • Journal of information and communication convergence engineering
    • /
    • 제14권2호
    • /
    • pp.122-128
    • /
    • 2016
  • In the future, hybrid power management systems using fuel cells (FCs) and batteries will be used as the driving power systems of ships. These systems consist of an FC, a converter, an inverter, and a battery. In general, an FC provides steady-state energy; a battery provides the dynamic energy in the start state of a ship for enabling a smooth operation, and provides or absorbs the peak or dynamic power when the load varies and the FC cannot respond immediately. The FC voltage range is very wide and depends on the load; Therefore, the FC cannot directly connect to the inverter. In this paper, we propose a power management strategy and design process involving a unidirectional converter, a bidirectional converter, and an inverter, considering the ship's operating conditions and the power conditions of the FC and the battery. The presented experimental results were verified through a simulation.

용융탄산염 연료전지 Anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구 (Numerical Analysis of the Gas Flow Distribution Characteristics in the Anode Flow Channel of Molten Carbonate Fuel Cell (MCFC))

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.834-839
    • /
    • 2009
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}$1% between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

분산형 소형 연료전지용 1KW급 열교환기 설계 (Heat Exchanger Design For The Individually Allocated Fuel Cell For 1kw Power generation)

  • 이택홍;박태성;김태완;노재현;강영진
    • 한국수소및신에너지학회논문집
    • /
    • 제25권1호
    • /
    • pp.39-46
    • /
    • 2014
  • Our lab designs a heat exchangers for hydrogen gas. Coolant is water, thus it is very difficult to determine heat transfer parameters in this gas-liquid system. Repeated experiments gives overdesign value 6.06%, overall heat transfer coefficient 36.32 ($kcal/m^2-hr-^{\circ}C$) for Hydrogen. Theoretically determined overall heat transfer coefficient is 38.44 ($kcal/m^2-hr-^{\circ}C$). Our lab simulated this system and overdesign 30.4% shows good match with this experiment by HTRI. These parameters are in same range with literature.

용융탄산염 연료전지 anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구 (Numerical analysis of the gas flow distribution characteristics in the anode flow channel of the molten carbonate fuel cell (MCFC))

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3120-3124
    • /
    • 2008
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}1%$ between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

  • PDF

선박 발전기용 연료전지 시스템의 효율에 관한 연구 (A Study on the Efficiency of Fuel Cells for Marine Generators)

  • 이정희;곽재섭;김광희
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.52-57
    • /
    • 2018
  • Most current ships have adopted on-board diesel generators to produce electricity, but the overall efficiency of equipment is down to about 50% due to thermal losses from operations such as exhaust gas, jacket water cooler, scavenge air cooler, etc. Recently, fuel cells have been highlighted as a promising technology to reduce the effect on the environment and have a higher efficiency. Therefore, this paper suggested a solid oxide fuel cell (SOFC)-gas turbine (GT) using waste heat from a SOFC and SOFC-GT-steam turbine (ST) with Rankine cycle. To compare both configurations, the fuel flow rate, current density, cell voltage, electrical power, and overall efficiency were evaluated at different operating loads. The overall efficiency of both SOFC hybrid systems was higher than the conventional system.

연료전지 BOP용 구심터빈 공력설계에 관한 연구 (A Study of Aerodynamic Design of a Radial Turbine for BOP of MCFC Fuel Cell System)

  • 최범석;안국영;박무룡
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.531-534
    • /
    • 2006
  • 250kw급 MFFC용 연료전지 발전시스템에 적용 가능한 BOP 중에서 터보제너레이터 사이클을 구성하는 구심터빈의 공력설계에 관한 연구를 수행하였다. 기본적인 치수는 평균반경에서의 해석 뿐만 아니라 구심터빈에서 반경 반향으로 변화가 크게 발생하므로 출구측에서 반경반향의 변화를 고려하여 결정하였다. 기본공력설계 과정에서 결정된 구심터빈 임펠러의 자오면 기본형상과 입출구 날개각 등의 기본설계 자료를 바탕으로 임펠러의 기하학적 3차원 형상을 결정하였다. 구심터빈 임펠러의 3차원 블레이드 형상이 결정되면 일련의 CFD를 통한 원심펌프 임펠러 내부의 유동현상을 고찰함으로써 기하학적 형상의 타당성을 검토하는 반복 설계 과정을 수행하였다. 또한, 여러 회전수에 대하여 정익에서와 동익에서의 유량이 일치할 수 있도록 동익 출구의 압력을 조절하여 작동유체의 각 위치에서의 값들을 구하고 각각의 위치에 따라 적절한 손실모델을 적용하여 탈설계점에서의 성능곡선을 구하였다. CFD 해석결과, MCFC 발전시스템에 마이크로 터보제너레이터를 적용시킬 경우에 폐열을 이용하여 16kW 정도의 전력을 추가로 생산할 수 있는 것으로 나타났다.

  • PDF

철도차량 견인특성을 고려한 인터리브드 양방향 DC-DC 컨버터의 리플전류 저감에 관한 연구 (A Study on Ripple Current Reduction of Interleaved Bi-directional DC-DC Converter for Traction Characteristic of Railway Vehicle)

  • 이환;정노건;김재문
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.733-739
    • /
    • 2017
  • Research on fuel cell systems attracting attention as an environmentally friendly energy source has been actively conducted. And research is being conducted on railway vehicles that use direct current power generated by a fuel cell as an energy source. In this paper, a two-phase interleaved bidirectional DC-DC converter has been proposed which can supply electric energy of a battery to a traction motor during powering and charge the battery with regenerative energy during braking. Therefore, the topology of the energy storage system applied to the railway vehicle was analyzed, and the simulation was performed by constructing the power conversion system by this topology. Experiments were also conducted through hardware design and fabrication based on the simulation analysis results, and the validity of the hardware implementation was verified.

75kW 용융탄산염 연료전지 시스템의 MBOP 개발 (The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell)

  • 김범주;김도형;이정현;강승원;임희천
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.353-356
    • /
    • 2009
  • A pivotal mechanical balance of plant for 75kW class molten carbonate fuel cells comprise of a catalytic burner and an ejector which has been designed and tested in KEPRI(Korea Electric Power Research Institute). The catalytic burner, which oxidizes residual fuel in the anode tail gas, was operated at several conditions. Some problems arose due to local overheating or auto-ignition, which could limit the catalyst life. The catalytic burner was designed by considering both gas mixing and gas velocity. Test results showed that the temperature distribution is very uniform. In addition, an ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air Several ejectors were designed and tested to form a suction on the fuel tail gas and balance the differential pressures between anode and cathode over a range of operating conditions. The tests showed that the design of the nozzle and throat played an important role in balancing the anode tail and cathode inlet gas pressures. The 75kW MCFC system built in our ejector and catalytic burner was successfully operated from Novembe, 2008 to April, 2009. It recorded the voltage of 104V at the current of 754A and reached the maximum generating power of 78.5kW DC. The results for both stand-alone and integration into another balance of plant are discussed.

  • PDF

Experimental Analyses of Cell Voltages for a Two-cell PEM Stack Under Various Operating Conditions

  • Park, Sang-Kyun;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.881-890
    • /
    • 2011
  • Analyses of performance and behavior of the individual PEM fuel cells (PEMFC) under different operating conditions are of importance optimally to design and efficiently to operate the stack. The paper focuses on experimental analyses of a two-cell stack under different operating conditions, which performance and behavior are measured by the voltage of a cell as well as the stack. Experimental parameters include stoichiometric ratio, temperature of the air supplied under different working stack temperatures and loads. Results showed that the cell voltages are dominantly influenced by the temperature of the air supplied among others. In addition, an inherent difference between the first and the second cell voltage exists because of the tolerances of the cell components and the resulting different over-potentials at different equilibrium states. Furthermore, it is shown that the proton conductivity in the membranes conditioned by the humidity in the cathode channel highly affects the voltage differences of the two cells.

Design and Evaluation of a Multi-layer Interior PM Synchronous Motor for High-Speed Drive Applications

  • Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.405-412
    • /
    • 2016
  • In general, surface mounted PM synchronous motors (SPMSMs) are mainly adopted as a driving motor for high-speed applications, because they have high efficiency and high power density. However, the SPMSMs have some weak points such as the increase of magnetic reluctance and additional losses as a consequence of using a non-magnetic sleeve. Especially, the magneto-motive force (MMF) in the air-gap of the SPMSMs is weakened due to the magnetically increased resistance. For that reason, a large amount of PM is consumed to meet the required MMF. Nevertheless, it cannot help using the sleeve in order to maintain the mechanical integrity of a rotor assembly in high-speed rotation. Thus, in this paper, a multi-layer interior PM synchronous motor (IPMSM) not using the sleeve is presented and designed as an alternative of a SPMSM. Both motors are evaluated by test results based on a variety of characteristics required for an air blower system of a fuel cell electric vehicle.