DOI QR코드

DOI QR Code

Experimental Analyses of Cell Voltages for a Two-cell PEM Stack Under Various Operating Conditions

  • Received : 2011.09.30
  • Accepted : 2011.11.21
  • Published : 2011.11.30

Abstract

Analyses of performance and behavior of the individual PEM fuel cells (PEMFC) under different operating conditions are of importance optimally to design and efficiently to operate the stack. The paper focuses on experimental analyses of a two-cell stack under different operating conditions, which performance and behavior are measured by the voltage of a cell as well as the stack. Experimental parameters include stoichiometric ratio, temperature of the air supplied under different working stack temperatures and loads. Results showed that the cell voltages are dominantly influenced by the temperature of the air supplied among others. In addition, an inherent difference between the first and the second cell voltage exists because of the tolerances of the cell components and the resulting different over-potentials at different equilibrium states. Furthermore, it is shown that the proton conductivity in the membranes conditioned by the humidity in the cathode channel highly affects the voltage differences of the two cells.

Keywords

References

  1. Q. Yan, H. Toghiani and H. Causey, "Steady state and dynamic performance of proton exchange membrane fuel cell (PEMFCs) under various operating conditions and load changes", J. Power Sources, 161, pp. 492-502, 2006. https://doi.org/10.1016/j.jpowsour.2006.03.077
  2. M. G. Santarelli and M. F. Torchio, "Experimental analysis of the effects of the operating variables on the performance of a single PEMFC", Energy Conversion and Management, 48 pp. 40-51, 2007. https://doi.org/10.1016/j.enconman.2006.05.013
  3. L. Wang and H. Liu, "Performance studies of PEM fuel cells with interdigitated flow fields", J. Power Sources, 134, pp. 185-196, 2004. https://doi.org/10.1016/j.jpowsour.2004.03.055
  4. H. S. Kim and K. Min, "Experimental investigation of dynamic responses of a transparent PEM fuel cell to step changes in cell current density with operating temperature", Journal of Mechanical Science and Technology, 22, pp. 2274-2285, 2008. https://doi.org/10.1007/s12206-008-0702-4
  5. J. J. Hwang and H. S. Hwang, "Parametric studies of a double-cell stack of PEMFC using GrafoilTM flow-field plates", J. Power Sources, 104, pp. 24-32, 2002. https://doi.org/10.1016/S0378-7753(01)00865-5
  6. M. V. Williams, H. R. Kunz and J. M. Fenton, "Operation of nafion-based PEM fuel cells with no external humidification: Influence of operating conditions and gas diffusion layers", J. Power Sources, 135, pp. 122-134, 2004. https://doi.org/10.1016/j.jpowsour.2004.04.010
  7. M. F. Torchio, M. G. Santarelli and A. Nicali, "Experimental analysis of the CHP performance of a PEMFC stack by a 24 factorial design", J. Power Sources, 149, pp. 33-43, 2005. https://doi.org/10.1016/j.jpowsour.2005.01.060
  8. B. Wahdame, D. Candusso and J. M. Kauffmann, "Study of gas pressure and flow rate influences on a 500W PEM fuel cell, thanks to the experimental design methodology", J. Power Sources, 156, pp. 92-99, 2006. https://doi.org/10.1016/j.jpowsour.2005.08.036
  9. Y. M. Ferng, Y. C. Tzang, B. S. Pei, C. C. Sun, A, Su, "Analytical and experimental investigations of proton exchange membrane fuel cell", J. Hydrogen Energy, 29, pp. 381-391, 2004. https://doi.org/10.1016/S0360-3199(03)00159-9
  10. W. M. Yan, S. C. Mei, C. Y. Soong, Z. S. Liu and D. Song, "Experimental study on the performance of PEM fuel cells with interdigitated flow channels", J. Power Sources, 160, pp. 116-122, 2006. https://doi.org/10.1016/j.jpowsour.2006.01.063
  11. F. N. Buchi and G. G. Scherer, "In situ resistance measurements of Nafion117 membranes in polymer electrolyte fuel cells", J. Electroanal. Chem., 404, pp. 37-43, 1996. https://doi.org/10.1016/0022-0728(95)04321-7
  12. A. V. Anantaraman and C. L. Gardner, "Study on ion-exchange membranes. Part 1. Effect of humidity on conductivity of Nafion", J. Electroanal. Chem., 414, pp. 155-120, 1996.
  13. J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley and P. R. Roberge, "Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. I. Mechanistic model development", J. Electrochem. Soc., 142, pp. 1-8, 1995. https://doi.org/10.1149/1.2043866
  14. J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Roberge and T. J. Harris, "Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. II. Empirical model development", J. Electro chem. Soc., 142, pp. 9-15, 1995. https://doi.org/10.1149/1.2043959
  15. T. E. Springer, T. A. Zawodzinski and S. Gottesfeld, "Polymer electrolyte fuel cell model", J. Electrochem. Soc., 138, pp. 2334-2341, 1991. https://doi.org/10.1149/1.2085971
  16. T. V. Nguyen and R. E. White, "A water and heat management model for protonexchange- membrane fuel cells", J. Electro chem. Soc., 140, pp. 2178-2186, 1993. https://doi.org/10.1149/1.2220792
  17. T. Mennola, M. Mikkola, M. Noponen, T. Hottinen and P. Lund, "Measurement of ohmic voltage losses in individual cells of a PEMFC stack", J. Power Sources, 112, pp. 261-272, 2002. https://doi.org/10.1016/S0378-7753(02)00391-9
  18. X. Yuan, J. Colin Sun, H. Wang and J. Zhang, "AC impedance diagnosis of a 500W PEM fuel cell stack Part II: Individual cell impedance", J. Power Sources, 161, pp. 929- 937, 2006. https://doi.org/10.1016/j.jpowsour.2006.07.020
  19. P. Rodatz, F. Buchi, C. Onder and L. Guzzella, "Operational aspects of a large PEFC stack under practical conditions", J. Power Sources, 128, pp. 208-217, 2004. https://doi.org/10.1016/j.jpowsour.2003.09.060
  20. J. Larminie, A. Dicks, Fuel cell systems explained, 2nd ed., Wiley, 2003.