• Title/Summary/Keyword: fuel burnup

Search Result 260, Processing Time 0.024 seconds

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele;Cherezov, Alexey;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3563-3579
    • /
    • 2021
  • Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

PROGRESS IN NUCLEAR FUEL TECHNOLOGY IN KOREA

  • Song, Kun-Woo;Jeon, Kyeong-Lak;Jang, Young-Ki;Park, Joo-Hwan;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.493-520
    • /
    • 2009
  • During the last four decades, 16 Pressurized Water Reactors (PWR) and 4 Pressurized Heavy Water Reactors (PHWR) have been constructed and operated in Korea, and nuclear fuel technology has been developed to a self-reliant state. At first, the PWR fuel design and manufacturing technology was acquired through international cooperation with a foreign partner. Then, the PWR fuel R&D by Korea Atomic Energy Research Institute (KAERI) has improved fuel technology to a self-reliant state in terms of fuel elements, which includes a new cladding material, a large-grained $UO_2$ pellet, a high performance spacer grid, a fuel rod performance code, and fuel assembly test facility. The MOX fuel performance analysis code was developed and validated using the in-reactor test data. MOX fuel test rods were fabricated and their irradiation test was completed by an international program. At the same time, the PWR fuel development by Korea Nuclear Fuel (KNF) has produced new fuel assemblies such as PLUS7 and ACE7. During this process, the design and test technology of fuel assemblies was developed to a self-reliant state. The PHWR fuel manufacturing technology was developed and manufacturing facility was set up by KAERI, independently from the foreign technology. Then, the advanced PHWR fuel, CANFLEX(CANDU Flexible Fuelling), was developed, and an irradiation test was completed in a PHWR. The development of the CANFLEX fuel included a new design of fuel rods and bundles.. The nuclear fuel technology in Korea has been steadily developed in many national R&D programs, and this advanced fuel technology is expected to contribute to a worldwide nuclear renaissance that can create solutions to global warming.

COMPARISON OF CANDU DUPIC PHYSICS CODES WITH MCNP

  • Gyuhong Roh;Park, Hangbok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.65-70
    • /
    • 1997
  • Computational benchmark calculations have been performed for CANDU DUPIC fuel lattice and core using a Monte Carlo code MCNP-4B with ENDF/B-V library. The eigenvalues of the DUPIC fuel lattice have been predicted by an integral transport code WIMS-AECL using ENDF/B-V library for different burnup steps and lattice conditions. The comparison has shown that the eigenvalues match those of MCNP-4B within 0.20% $\Delta$k difference between WIMS-AECL and MCNP-4B results. The calculation of a 2-dimensional CANDU core loaded with DUPIC fuel has shown that the eigenvalue predicted by a diffusion code RFSP using lattice parameters generated by WIMS-AECL matches that of MCNP-4B within 0.12%Δk and the largest bundle power prediction error is around 7.2%.

  • PDF

Comparison of Matrix Exponential Methods for Fuel Burnup Calculations

  • Oh, Hyung-Suk;Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.172-181
    • /
    • 1999
  • Series expansion methods to compute the exponential of a matrix have been compared by applying them to fuel depletion calculations. Specifically, Taylor, Pade, Chebyshev, and rational Chebyshev approximations have been investigated by approximating the exponentials of bum matrices by truncated series of each method with the scaling and squaring algorithm. The accuracy and efficiency of these methods have been tested by performing various numerical tests using one thermal reactor and two fast reactor depletion problems. The results indicate that all the four series methods are accurate enough to be used for fuel depletion calculations although the rational Chebyshev approximation is relatively less accurate. They also show that the rational approximations are more efficient than the polynomial approximations. Considering the computational accuracy and efficiency, the Pade approximation appears to be better than the other methods. Its accuracy is better than the rational Chebyshev approximation, while being comparable to the polynomial approximations. On the other hand, its efficiency is better than the polynomial approximations and is similar to the rational Chebyshev approximation. In particular, for fast reactor depletion calculations, it is faster than the polynomial approximations by a factor of ∼ 1.7.

  • PDF

Fuel Management Study on DUPIC Core

  • Park, Hangbok;Bo W. Rhee;Park, Hyunsoo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.41-47
    • /
    • 1995
  • A parametric study bas been performed for the various refueling schemes of CANDU 6 reactor loaded with reference DUPIC fuel. The optimum discharge burnup was determined such that the peak bundle power is minimized for the equilibrium core. Based on the results of instantaneous core calculation using patterned random age distributions, it was decided to perform the refueling simulations only for 2-bundle and 4-bundle shift refueling schemes. The 600 FPD simulation has shown that the operational margins of the channel and bundle power to the license limits are 7.9% and 17.1%, respectively, for 2-bundle shift refueling scheme. The 4-bundle shift refueling scheme also satisfies the license limits and the operational margins of the channel and bundle power are 7.1% and 9.8%, respectively. The result of refueling simulation indicate the possibility of using reference DUPIC fuel in current CANDU 6 reactor.

  • PDF

MCCARD: MONTE CARLO CODE FOR ADVANCED REACTOR DESIGN AND ANALYSIS

  • Shim, Hyung-Jin;Han, Beom-Seok;Jung, Jong-Sung;Park, Ho-Jin;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.161-176
    • /
    • 2012
  • McCARD is a Monte Carlo (MC) neutron-photon transport simulation code. It has been developed exclusively for the neutronics design of nuclear reactors and fuel systems. It is capable of performing the whole-core neutronics calculations, the reactor fuel burnup analysis, the few group diffusion theory constant generation, sensitivity and uncertainty (S/U) analysis, and uncertainty propagation analysis. It has some special features such as the anterior convergence diagnostics, real variance estimation, neutronics analysis with temperature feedback, $B_1$ theory-augmented few group constants generation, kinetics parameter generation and MC S/U analysis based on the use of adjoint flux. This paper describes the theoretical basis of these features and validation calculations for both neutronics benchmark problems and commercial PWR reactors in operation.

AEGIS: AN ADVANCED LATTICE PHYSICS CODE FOR LIGHT WATER REACTOR ANALYSES

  • Yamamoto, Akio;Endo, Tomohiro;Tabuchi, Masato;Sugimura, Naoki;Ushio, Tadashi;Mori, Masaaki;Tatsumi, Masahiro;Ohoka, Yasunori
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.500-519
    • /
    • 2010
  • AEGIS is a lattice physics code incorporating the latest advances in lattice physics computation, innovative calculation models and efficient numerical algorithms and is mainly used for light water reactor analyses. Though the primary objective of the AEGIS code is the preparation of a cross section set for SCOPE2 that is a three-dimensional pin-by-pin core analysis code, the AEGIS code can handle not only a fuel assembly but also multi-assemblies and a whole core geometry in two-dimensional geometry. The present paper summarizes the major calculation models and part of the verification/validation efforts related to the AEGIS code.

Slab Thickness Calculations on Hot Cell

  • Ha, Yung-Joon;Kim, Seong-Yun;Kim, Dong-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.26-36
    • /
    • 1978
  • Numerical computations of radioactivities and decay energies in a spent fuel have been carried out for designing of a hot cell. Optimum wall and window thicknesses that can preserve spent fuel rods for experimental purposes are estimated with burnup rate of 33,000 MWD/T(U) which is nearly maximum from a pressurized water reactor such as the Go-Ri Unit 1. Before putting the spent fuels into a hot cell, it is assumed for thickness estimates of shield materials that they are cooled in a storage tay for several lime intervals. Considered are various types of shield materials through which changing the distances from a source to an observation point is also made.

  • PDF

Analysis of Corrosion Behavior of KOFA Zircaloy-4 Cladding

  • Lee, Chan-Bock;Kim, Ki-Hang
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.173-179
    • /
    • 1998
  • The corrosion behavior of KOFA cladding which is a standard Zircaloy-4 manufactured by Westinghouse Specialty Metal Plant according to the Siemens/KWU's HCW (Highly Cold Worked) standard Zircaloy-4 specification was analyzed using the oxide measurement data of KOFA fuel irradiated in Kori-2 nuclear power plant. Analysis of the measured KOFA cladding oxidation showed that oxidation of KOFA cladding was lower than the design prediction based upon Siemens/KWU's HCW standard Zircaloy-4 cladding. Although the measured fuel rods have relatively low burnup and oxidation and the amount of the measured data are small, analysis of manufacturing and in-reactor operation conditions of KOFA cladding indicates that the differences in the manufacturing processes and chemical composition of the Siemens/KWU's HCW (Highly Cold Worked) standard Zircaloy-4 and KOFA cladding may have somewhat contributed to lower corrosion of KOFA cladding than the expected.

  • PDF

VERIFICATION OF COSMOS CODE USING IN-PILE DATA OF RE-INSTRUMENTED MOX FUELS

  • Lee, Byung-Ho;Koo, Yang-Hyun;Cheon, Jin-Sik;Oh, Je-Yong;Joo, Hyung-Kook;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.05a
    • /
    • pp.242-242
    • /
    • 2002
  • Two MIMAS MaX fuel rods base-irradiated in a commercial PWR have been reinstrumented and irradiated at a test reactor. The fabrication data for two MOX roda are characterized together with base irradiation information. Both Rods were reinstrumented to be fitted with thermocouple to measure centerline temperature of fuel. One rod was equipped with pressure transducer for rod internal pressure whereas the other with cladding elongation detector. The post irradiation examinations for various items were performed to determine fuel and cladding in-pile behavior after base irradiation. By using well characterized fabrication and re-instrumentation data and power history, the fuel performance code, COSMOS, is verified with measured in-pile and PIE information. The COMaS code shows good agreement for the cladding oxidation and creep, and fission gas release when compared with PIE dad a after base irradiaton. Based on the re-instrumention information and power history measured in-pile, the COSMOS predicts re-instrumented in-pile thermal behaviour during power up-ramp and steady operation with acceptable accuracy. The rod internal pressure is also well simulated by COSMOS code. Therfore, with all the other verification by COSMOS code up to now, it can be concluded that COSMOS fuel performance code is applicable for the design and license for MaX fuel rods up to high burnup.

  • PDF