• Title/Summary/Keyword: fuel burn-up

Search Result 88, Processing Time 0.024 seconds

Delayed fast neutron as an indicator of burn-up for nuclear fuel elements

  • Akyurek, T.;Shoaib, S.B.;Usman, S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3127-3132
    • /
    • 2021
  • Feasibility study of burn-up analysis and monitoring using delayed fast neutrons was investigated at Missouri University of Science and Technology Reactor (MSTR). Burnt and fresh fuel elements were used to collect delayed fast neutron data for different power levels. Total reactivity varied depending on the burn-up rate of fuel elements for each core configuration. The regulating rod worth was 2.07E-04 𝚫k/k/in and 1.95E-04 𝚫k/k/in for T121 and T122 core configurations at 11 inch, respectively. Delayed fast neutron spectrum of F1 (burnt) and F16 (fresh) fuel elements were analyzed further, and a strong correlation was observed between delayed fast neutron emission and burn-up. According to the analyzed peaks in burnt and fresh fuels, reactor power dependency was observed and it was determined that delayed neutron provided more reliable results at reactor powers of 50 kW and above.

Modeling of Pore Coarsening in the Rim Region of High Burn-up UO2 Fuel

  • Xiao, Hongxing;Long, Chongsheng
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1002-1008
    • /
    • 2016
  • An understanding of the coarsening process of the large fission gas pores in the high burn-up structure (HBS) of irradiated $UO_2$ fuel is very necessary for analyzing the safety and reliability of fuel rods in a reactor. A numerical model for the description of pore coarsening in the HBS based on the Ostwald ripening mechanism, which has successfully explained the coarsening process of precipitates in solids is developed. In this model, the fission gas atoms are treated as the special precipitates in the irradiated $UO_2$ fuel matrix. The calculated results indicate that the significant pore coarsening and mean pore density decrease in the HBS occur upon surpassing a local burn-up of 100 GWd/tM. The capability of this model is successfully validated against irradiation experiments of $UO_2$ fuel, in which the average pore radius, pore density, and porosity are directly measured as functions of local burn-up. Comparisons with experimental data show that, when the local burn-up exceeds 100 GWd/tM, the calculated results agree well with the measured data.

A new burn-up module for application in fuel performance calculations targeting the helium production rate in (U,Pu)O2 for fast reactors

  • Cechet, A.;Altieri, S.;Barani, T.;Cognini, L.;Lorenzi, S.;Magni, A.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1893-1908
    • /
    • 2021
  • In light of the importance of helium production in influencing the behaviour of fast reactor fuels, in this work we present a burn-up module with the objective to calculate the production of helium in both in-pile and out-of-pile conditions tracking the evolution of 23 alpha-decaying actinides. This burn-up module relies on average microscopic cross-section look-up tables generated via SERPENT high-fidelity calculations and involves the solution of the system of Bateman equations for the selected set of actinide nuclides. The results of the burn-up module are verified in terms of evolution of actinide and helium concentrations by comparing them with the high-fidelity ones from SERPENT, considering two representative test cases of (U,Pu)O2 fuel in fast reactor conditions. In addition, a code-to-code comparison is made with the independent state-of-the-art module TUBRNP (implemented in the TRANSURANUS fuel performance code) for the same test cases. The herein presented burn-up module is available in the SCIANTIX code, designed for coupling with fuel performance codes.

A STUDY ON THE INITIAL CHARACTERISTICS OF DOMESTIC SPENT NUCLEAR FUELS FOR LONG TERM DRY STORAGE

  • Kim, Juseong;Yoon, Hakkyu;Kook, Donghak;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.377-384
    • /
    • 2013
  • During the last three decades, South Korean nuclear power plants have discharged about 5,950 tons of spent fuel and the maximum burn-up reached 55 GWd/MTU in 2002. This study was performed to support the development of Korean dry spent fuel storage alternatives. First, we chose V5H-$17{\times}17$ and KSFA-$16{\times}16$ as representative domestic spent fuels, considering current accumulation and the future generation of the spent fuels. Examination reveals that their average burn-ups have already increased from 33 to 51 GWd/MTU and from 34.8 to 48.5 GWd/MTU, respectively. Evaluation of the fuel characteristics shows that at the average burn-up of 42 GWd/MTU, the oxide thickness, hydrogen content, and hoop stress ranged from $30{\sim}60{\mu}m$, 250 ~ 500 ppm, and 50 ~ 75 MPa, respectively. But when burn-up exceeds 55 GWd/MTU, those characteristics can increase up to 100 ${\mu}m$, 800 ppm, and 120 MPa, respectively, depending on the power history. These results demonstrate that most Korean spent nuclear fuels are expected to remain within safe bounds during long-term dry storage, however, the excessive hoop stress and hydrogen concentration may trigger the degradation of the spent fuel integrity early during the long-term dry storage in the case of high burn-up spent fuels exceeding 45 GWd/MTU.

DISCUSSION ABOUT HBS TRANSFORMATION IN HIGH BURN-UP FUELS

  • Baron, Daniel;Kinoshita, Motoyasu;Thevenin, Philippe;Largenton, Rodrigue
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.199-214
    • /
    • 2009
  • High burn-up transformation process in low temperature nuclear fuel oxides material was observed in the early sixties in LWR $UO_2$ fuels, but not studied in depth. Increasing progressively the fuel discharge burn-up in PWR power plants, this material transformation was again observed in 1985 and identified as an important process to be accounted for in the fuel simulations due to its expected consequence on fuel heat transfer and therefore on the fission gas release. Fission gas release was one of the major concerns in PWR fuels, mainly during transient or accidents events. The behaviour of such a material in case of rod failure was also an important aspect to analyse. Therefore several national and international programs were launched during the last 25 years to understand the mechanisms leading to the high burn-up structure formation and to evaluate the physical properties of the final material. A large observations database has been acquired, using the more sophisticated techniques available in hot cells. This large database is discussed in this paper, providing basis to build an engineering-model, which is based on phenomenological description data and information accumulated. In addition this paper has the ambition to construct the best logical model to understand restructuring.

Calculation of Low-Energy Reactor Neutrino Spectra for Reactor Neutrino Experiments

  • Riyana, Eka Sapta;Suda, Shoya;Ishibashi, Kenji;Matsuura, Hideaki;Katakura, Jun-ichi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • Background: Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. Materials and Methods: To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% $^{235}U$ contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. Results and Discussion: We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. $^{241}Pu$) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate Conclusion: Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

A comparative study on the impact of Gd2O3 burnable neutron absorber in UO2 and (U, Th)O2 fuels

  • Uguru, Edwin Humphrey;Sani, S.F.Abdul;Khandaker, Mayeen Uddin;Rabir, Mohamad Hairie;Karim, Julia Abdul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1099-1109
    • /
    • 2020
  • The performance of gadolinium burnable absorber (GdBA) for reactivity control in UO2 and (U, Th)O2 fuels and its impact on spent fuel characteristics was performed. Five fuel assemblies: one without GdBA fuel rod and four each containing 16, 24, 34 and 44 GdBA fuel rods in both fuels were investigated. Reactivity swing in all the FAs with GdBA rods in UO2 fuel was higher than their counterparts with similar GdBA fuel rods in (U, Th)O2 fuel. The excess reactivity in all FAs with (U, Th)O2 fuel was higher than UO2 fuel. At the end of single discharge burn-up (~ 49.64 GWd/tHM), the excess reactivity of (U, Th) O2 fuel remained positive (16,000 pcm) while UO2 fuel shows a negative value (-6,000 pcm), which suggest a longer discharge burn-up in (U, Th)O2 fuel. The concentration of plutonium isotopes and minor actinides were significantly higher in UO2 fuel than in (U, Th)O2 fuel except for 236Np. However, the concentration of non-actinides (gadolinium and iodine isotopes) except for 135Xe were respectively smaller in (U, Th)O2 fuel than in UO2 fuel but may be two times higher in (U, Th)O2 fuel due to its potential longer discharge burn-up.

SUMMARY OF THE RESULTS FROM THE PHEBUS FPT-1 TEST FOR A SEVERE ACCIDENT AND THE LESSONS LEARNED WITH MELCOR

  • Park, Jong-Hwa;Kim, Dong-Ha;Kim, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.535-550
    • /
    • 2006
  • The objectives of this paper are twofold to summarize the new findings and confirmed results from the Phebus FPT-1 experimental data and to report useful information to MELCOR users regarding the better use of MELCOR. For the core damage behavior, the early stage of a melt progression was predicted well; however, the late phase models, concerned with fuel dissolution, oxide cladding failure, fuel slumping, rubble debris heat up, effects of burn-up fuel, and so on, still showed limitations in MELCOR. For the fission product behavior, the comparison showed unexpected phenomena, various limitations, unresolved issues, and even absence of models. The issues summarized in this study have revealed the main areas where our endeavors need to be intensified in order to improve our understanding of severe accident phenomena. From the analysis of the Phebus FPT-1 test results, not only new core damage features, such as foaming or core expansion, but also possible new fission product release patterns due to effects from a high burn-up fuel have raised alternative challenging phenomena that should be solved in the next severe accident research phase.

1D AND 3D ANALYSES OF THE ZY2 SCIP BWR RAMP TESTS WITH THE FUEL CODES METEOR AND ALCYONE

  • Sercombe, J.;Agard, M.;Struzik, C.;Michel, B.;Thouvenin, G.;Poussard, C.;Kallstrom, K.R.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.187-198
    • /
    • 2009
  • In this paper, three power ramp tests performed on high burn-up Re-crystallized Zircaloy2 - UO2 BWR fuel rods (56 to 63 MWd/kgU) within the SCIP project are simulated with METEOR and ALCYONE 3D. Two of the ramp tests are of staircase type up to Linear Heat Rates of 420 and 520 W/cm and with long holding periods. Failure of the 420 W/cm fuel rod was observed after 40 minutes. The third ramp test consisted of a more standard ramp test with a constant power rate of 80 W/cm/min up to 410 W/cm with a short holding time. The tests were first simulated with the METEOR 1D fuel rod code, which gave accurate results in terms of profilometry and fission gas releases. The behaviour of a fuel pellet fragment and of the cladding piece on top of it was then investigated with ALCYONE 3D. The size and the main characteristics of the ridges after base irradiation and power ramp testing were recovered. Finally, the failure criteria validated for PWR conditions and fuel rods with low-to-medium burn-ups were used to analyze the failure probability of the KKL rodlets during ramp testing.

A Experimental Study on the Electronic Control Hysteresis Phenomenon of Lean Burn in Spark Ignition Engine (스파크 점화 엔진에서 희박연소의 전자제어 히스테리시스 현상에 관한 실험적 연구)

  • 김응채;김판호;서병준;김치원;이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.475-481
    • /
    • 2004
  • Recently it is strongly required on lower fuel consumption. lower exhaust emission, higher engine performance. and social demands in a spark ignition gasoline engine. In this study. the experimental engine used at test. it has been modified the lean burn gasoline engine. and used the programmable engine management system, and connected the controller circuit which is designed for the engine control. At the parametric study of the engine experiment, it has been controlled with fuel injection, ignition timing. swirl mode, equivalence ratio engine dynamometer load and speed as the important factors governing the engine performance adaptively. It has been found the combustion characteristics to overcome the hysteresis phenomena between normal and lean air-fuel mixing ranges. by mean of the look-up table set up the mapping values. at the optimum conditions during the engine operation. As the result, it is found that the strength of the swirl flow with the variation of engine speed and load is effective on combustion characteristics to reduce the bandwidth of the hysteresis regions. The results show that mass fraction burned and heat release rate pattern with crank angle are reduced much rather, and brake specific fuel consumption is also reduced simultaneously.