• Title/Summary/Keyword: fuel Injection Timing

Search Result 338, Processing Time 0.021 seconds

Effect of Injection Characteristics on Performance in a LPLi Engine (LPG액상분상엔진의 분사특성이 성능에 미치는 영향)

  • Kim, Chang-Gi;Lee, Jin-Wook;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.46-52
    • /
    • 2004
  • An LPG engine (KL6i) for heavy duty vehicle has been developed using liquid phase LPG injection (LPLi) system, which has regarded as one of next generation LPG fuel supply systems. For the KL6i engine, lean burn technology was introduced to minimize the thermal loading and NOx emissions due to an increase of the engine power. In this work, injection timing and piston bowl shape were investigated for the stabilization of lean burn characteristics. Experimental results reveals that fuel stratification induced by these parameters is most effective strategy to extend lean combustion limit in the LPLi system.

  • PDF

Observer Design of an Injector for Fuel Control in DI Diesel Engines with an Electronically Controlled Injector (전자제어식 직접분사 디젤엔진의 연료제어를 위한 인젝터 관측기 설계)

  • Kim Sunwoo;Lee Kangyoon;Chung Namhoon;Sunwoo Myoungho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1305-1311
    • /
    • 2004
  • This study presents a mathematical model and a sliding mode observer of the injection system for common rail diesel engines. The injector model consists of three subsystems: the actuator subsystem, the mechanical subsystem, and the hydraulic subsystem. In the actuator subsystem, the constitutive relations of piezoelectricity are used to model the actuator made up of piezoelectric material. Based on the proposed model, the observer estimates the injection rate and injection timing, and can play a vital role of sensorless control of fuel injection in the near future. The sliding mode theory is applied to the observer design in order to overcome model uncertainties. The injector model and observer are evaluated through the injector experiments. The simulation results of the injector model are in good agreement with the experimental data. The sliding mode observer can effectively estimate the injection timing and the injection rate of the injector.

The Performance and Emission of the Intake Port Injection Type Hydrogen Fueled Engine (흡기관 분사 방식 수소 연료 기관의 성능 및 배출물에 관한 연구)

  • 이형승;이석재;이종화;유재석;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.27-33
    • /
    • 1993
  • Using the solenoid driven gas injection valve, Hydrogen fuel supply system was made. It was attached to a single cylinder research engine and intake port injection type hydrogen fueled S.I. engine was constructed. Engine performance, emission characteristics, and abnormal combustion were studied through the engine test performed with the variations of fuel-air equivalence ratio and spark timing. Compared with gasoline, hydrogen burns so fast that cylinder peak pressure and temperature are higher and NO is emitted more at full load condition. IN the case of intake port injection type engine, COVimep becomes lower due to the well-mixing of air and fuel, and engine output is lower owing to the low volumetric efficiency. As fuel-air equivalence ratio goes up, the combustion speed increases, and COVimep decreases. NO emission peaks slightly lean of stoichiometric. As spark timing advances and fuel-air equivalence ratio goes up, the cylinder peak pressure and temperature become higher, so abnormal combustions take place easily.

  • PDF

An Experimental Study on Effects of EGR Rate upon Exhaust Emissions in Small High-Speed Diesel Engines (소형 고속 디젤기관의 배기 배출물에 미치는 배기 재순환율의 영향에 관한 실험적 연구)

  • 임재근;배명환;김종일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.60-77
    • /
    • 1992
  • The effects of exhaust gas recirculation(EGR) on the characteristics of exhaust emissions and specific fuel consumption have been investigated using an eight-cylinder, four cycle, direct injection diesel engine operating at several loads and speeds. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. In conclusion, it is found that $NO_{x}$ emission is markedly reduced with the drop of burnt gas temperature at high speeds and loads especially as the EGR rate increases, while the soot particulate rises with EGR rate and load at a given engine speed, especially high loads. The reduction of exhaust emissions within the Korea heavy duty diesel engine emission standards can be roughly achieved by the optimal EGR rate without degarding the specific fuel consumption, based on the correlations between exhaust emissions.

  • PDF

Effects of optimal operating conditions on 2-stage injection PCCI diesel engine using Response Surface Methodology (반응 표면법을 이용한 2 단 분사 PCCI 디젤엔진의 운전조건의 영향도 평가에 대한 연구)

  • Lee, Jae-Hyeon;Kim, Hyung-Min;Lee, Ki-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3044-3048
    • /
    • 2008
  • It is well known that Premixed Charge Compression Ignition (PCCI) diesel engines according to many technologies such a change in injection timing, multiple injection strategy, cooled EGR, intake charging and SCV have the potential to achieve homogeneous mixture in the cylinder which result in lower NOx and PM as well as performance improvements. This may generate merely the infinite number of experimental conditions. The use of Response Surface Methodology (RSM) technique can considerably pull down the number of experimental set and time demand. This paper presents the effects of both fuel injection and engine operation conditions on the combustion and emissions in the PCCI diesel engine system. The experimental results have revealed that a change in fuel injection timing and multiple injection strategy along with various operating conditions affect the combustion, emissions and BSFC characteristics in the PCCI engine.

  • PDF

Effect of Multiple Injection on the Performance and Emission Characteristics of Lean Burn Gasoline Direct Injection Engines (다단분사가 초희박 GDI 엔진의 성능 및 배기에 미치는 영향)

  • Oh, Jin-Woo;Park, Cheol-Woong;Kim, Hong-Suk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.137-143
    • /
    • 2012
  • Currently, in order to meet the reinforced emissions regulations for harmful exhaust gas including carbon dioxide ($CO_2$) as a greenhouse gas, technologies for reducing $CO_2$ emission and fuel consumption are being developed. Gasoline direct injection (GDI) systems have the advantage of improved fuel economy and higher power output than port fuel injection gasoline engine systems. The aim of this study is to examine the performance and emission characteristics of a lean burn GDI engine equipped with spray-guided-type combustion system. Stable lean combustion was achieved with a late fuel injection strategy under a constant operating condition. Further improvement in specific fuel consumption is possible with the introduction of multiple fuel injection strategies, which also increases hydrocarbon (HC) and nitrogen oxide ($NO_x$) emissions and decreases carbon monoxide (CO) emission.

Numerical Study of Combustion Characteristics in CNG DI Engine using Gaseous Sphere Injection Model (기체구 분사 모델을 이용한 CNG DI 엔진의 연소특성 수치해석)

  • Choi, Mingi
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.171-177
    • /
    • 2019
  • This paper describes numerical study of combustion characteristics in CNG(compressed natural gas) DI(direct injection) engine using gaseous sphere injection model. Simulations were conducted using KIVA-3V Release 2 code. Gaseous sphere injection model, which is modified model of liquid fuel injection, was used to simulate the CNG direct injection. Until now, a very fine mesh smaller than the injector nozzle has been required to resolve the gas-jet inflow boundary. However, the gaseous sphere injection model simulates gaseous fuel injection using a coarse mesh. This model injects gaseous spheres as in liquid fuel injection and the gaseous spheres evaporate together without the latent heat of evaporation. Therefore, it does not require a very fine mesh and reduce calculation time. Combustion simulation were performed under various injection timings and injection pressures.

A Study on the Smoke Reduction of Methanol-Diesel Engine (메탄올-디젤기관의 스모크 저감에 관한 연구)

  • Han, Seong-Bin;Mun, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2421-2429
    • /
    • 1996
  • The objective of this research is to apply effect of the pre-mixed combustion quantity and smoke emission in diesel engine. According as air fuel ratio is increased, emission of smoke concentration is linearly reduced. As Injection timing is advanced, smoke concentration is remarkably reduced. It is considered to be the primary cause of the increase in the premixed combustible mixture during long ignition delay period with advancing injection timing. Smoke is increased with increasing engine speed, so it is considered to be the primary cause of the increase of the mass of fuel injected. Smoke is decreased according to the increase of methanol volume ratio. It is considered that the primary cause of the increase in the quantity of pre-mixed combustion.

Injection Feature and Engine Performance Improvement of the Direct Diesel Fuel Injection System (직접 디젤 연료분사계의 분사 특성과 기관 성능 개선에 관한 연구)

  • Yoon, Cheon-Han;Kim, Kyung-Hoon
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • This study has focused on using fuel injections as variables for measuring performance and reducing exhaust gas in turbo-charger diesel engine. In experiments, we changed nozzle hole diameter, diameter of an injection pipe, and injection timing as variable. The results show that torque. fuel consumption and smoke are reduced as nozzle hole diameter decreases, while NOx increases. When the diameter of injector is reduced, torque, fuel consumption and smoke are deteriorated, but NOx is decreased. In addition, when the time for injection is advanced. torque, fuel consumption and smoke are improved, but the density of NOx is increased.

  • PDF

An Experimental Study on the Combustion and Emission Characteristics According to the Variation of Compression Ratio and Intake Temperature Using Stratified Charge Compression Ignition in a Gasoline Direct Injection Engine (SCCI 방법을 이용한 직분식 가솔린 엔진내의 압축비 및 흡기 온도 변화에 따른 연소 및 배기 특성에 관한 실험적 연구)

  • Lee Chang-Hee;Lee Ki-Hyung;Lim Kyoung-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.538-545
    • /
    • 2006
  • Stratified charge compression ignition (SCCI) combustion, also known as HCCI(homogeneous charge compression ignition), offers the potential to improve fuel economy and reduce emission. In this study, SCCI combustion was studied in a single cylinder gasoline DI engine, with a direct injection system. We investigated the effects of air-fuel ratio, intake temperature and injection timing such as early injection and late injection on the attainable SCCI combustion region. Injection timing during the intake process was found to be an important parameter that affects the SCCI region width. We also find it. The effects of mixture stratification and fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.