• Title/Summary/Keyword: fruit firmness

Search Result 284, Processing Time 0.021 seconds

Optimum Nutrient Concentration to Improve Growth and Quality of Strawberry Cultivars 'Berrystar' and 'Jukhyang' in Hydroponics (딸기 수경재배 시 '베리스타'와 '죽향'의 생육과 품질 향상을 위한 적정 양액농도 설정)

  • Choi, Su Hyun;Choi, Gyeong Lee;Jeong, Ho Jeong;Kim, Seung Yu;Lee, Seong Chan;Choi, Hyo Gil
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.424-431
    • /
    • 2017
  • This study was conducted to set the optimum nutrient solution concentration by growth stage for new strawberry cultivars 'Berrystar' and 'Jukhyang'(Fragaria ${\times}$ ananassa Duch. cvs. 'Berrystar', 'Jukhyang') grown through hydroponics to improve the quality and yield. Three different EC levels were applied to the nutrient solution. The treatment levels were 0.7, 1.0 and 1.3 times higher than the nutrient concentration standard for 'Seolhyang' based on the 'Manual for strawberry cultivation' of Rural Development Administration. Based on the results, there were no significant differences in growth of 'Berrystar' by EC level. 'Jukhyang' showed the most vigorous growth grown in 1.3 times higher nutrient concentration. While the growth of 'Berrystar' and 'Jukhyang' grown in higher EC level has leaves with more chlorophyll concentration. However the quantum yield of leaves was not affected by the treatments. On the treatment with 1.3 times higher EC level, the weight, length, width and firmness of 'Berrystar' and 'Jukhyang' were significantly high. The sugar contents of the harvest analyzed by HPLC did not differed particularly, but the percentage composition of reducing sugar and non-reducing sugar were presented differently depending on the treatments. Marketable fruit yield increased as nutrient concentration increases. However, there were no large differences by treatments. Meanwhile, 'Jukhyang' showed significant difference by nutrient concentration and had the largest yield for a treatment grown in 1.3 times higher EC level. Based on these results, it is recommended to provide the same nutrient solution concentration level to the nutrient concentration standard of 'Seolhyang' for 'Berrystar', and the 1.3 times higher level for 'Jukhyang'.

Studies on the Psysio-Chemical Changes in Apple Fruits During the Storage Under Sub-atmospheric Pressure (감압(減壓)에 의(依)한 사과 저장중(貯藏中)의 생리화학적(生理化學的) 변화(變化)에 관(關)한연구(硏究))

  • Sohn, Tae-Hwa
    • Applied Biological Chemistry
    • /
    • v.19 no.4
    • /
    • pp.202-218
    • /
    • 1976
  • In this experiment American Summer Pairman apple was selected as test fruit in order to study the effect of sub-atmospheric pressure storage in the apple. keeping a certain pressure condition, a new sub-atmospheric pressure system was designed and constructed in which fruits were stored at $25^{\circ}C$ under two different atmospheric pressure conditions such as Normal Atmospheric Pressure (NAP) and Sub-Atmospheric Pressure (SAP). Moreover, they were divided into plots of 5% and 0% of $CO_2$, on the basis of gas composition. Under these conditions, the amount of respiration and ethylene evolution, and the changes of intercellular gas composition and organic components were investigated throughout the storage. The results obtained are as follows: (1) The intercellular gas was exhausted so rapidly by the SAP treatment that the gas equilibrium in the tissues reached within 5 minutes. (2) The amount of respiration was found to be higher in plots of NAP than SAP, and under the conditions, controlling $CO_2$ content, plots of $CO_2$ 5% were lower in the amount of respiration than $CO_2$ 0%. The climateric rise was revealed more slowly in plots of the SAP than NAP. These results indicate that the SAP treatment was an efficient method for controlling the respiration of fruits. Furthermore, these results were also realized with the results of the respiratory quotient (R.Q) and intercellular gas composition. (3) Evolution of ethylene, the ripening hormone in plant, was shown the similar tendency to the climacteric pattern of respiration; at the stage of climacteric maximum, the maximun amount of ethylene was found earlier in plots of NAP than SAP, and post climacteric stage was prolonged in the plots of the SAP compared to those of the NAP. The ethylene concentration in tissue appeared lower in plots of the SAP than NAP, which might suggest that the SAP treatment was caused to restriction of ethylene evolution. (4) Effects of the SAP treatment mentioned hitherto were proved also with the test of the external appearance such as changes of color and freshness, firmness, rotting and weight loss. (5) In the investigation of organic components, vitamin C and organic acids varied less in plots of SAP than NAP. Specially, it was remarkable that the loss of malic acid was least decreased by the SAP treatment. These effects of the SAP treatment were distinctive in the changes of the ratios of malic and citric acid to total acid, and the ratios of free sugar to free acid.

  • PDF

Effects of Salicylic Acid and 1-Methylcyclopropene on Physiological Disorders and Berry Quality in 'Campbell Early' Table Grapes (Salicylic acid 및 1-MCP 처리가 '캠벨얼리' 포도의 생리장해 및 품질에 미치는 영향)

  • Kim, Sung-Joo;Noh, Soo-In;Choi, Cheol;Lim, Byung-Sun;Ahn, Young-Jik;Chun, Jong-Pil
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.218-224
    • /
    • 2019
  • This study was conducted to compare the effect of salicylic acid (SA), an ethylene biosynthesis inhibitor, and the 1-methylcyclopropene (1-MCP) fumigation, to prevent fruit quality deterioration and physiological disorders during the shelf-life of Korea's leading export grape variety 'Campbell Early'. The berries treated with SA after 1-MCP fumigation (1-MCP+SA) showed a higher firmness value and titratable acidity than single treatment of SA or 1-MCP. The rate of shattered berry was high as 41.7% for 100ppm ethephon spray, 40.8% for $25{\mu}M$ SA, and 38.2% for 1,000ppb 1-MCP, but showing only 18.7% when the SA was applied after 1-MCP fumigation. The ratio of short brushes less than 1mm was largest at 74.3% for ethephon treatment, while 1-MCP+SA treatment was found to have the longest brush length among all treatments, with a 2-4mm ratio of 22.8% and a 4-6mm ratio of 27.9%. The weight of rachis was found to be the lowest at 2.3g in the ethephon treatment, and the reduction of rachis weight loss per cluster by 1-MCP+SA treatment was evident. In addition, 1-MCP+SA treatment were effective in mitigating stem browning and berry decay during the 16-day storage period at $19^{\circ}C$ in this cultivar, so it is believed that they can be used as a practical post-harvest treatment in grape exportation.

Effect of Chlorine Dioxide, Cold Plasma Gas Sterilization and MAP Treatment on the Quality and Microbiological Changes of Paprika During Storage (이산화염소 및 저온 플라즈마 가스 살균 및 MAP 처리가 파프리카의 저장 중 품질과 미생물학적 변화에 미치는 영향)

  • In-Lee, Choi;Joo Hwan, Lee;Yong Beom, Kwon;Yoo Han, Roh;Ho-Min, Kang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.223-229
    • /
    • 2022
  • This study was conducted to investigate the effect of packaging methods and sterilization treatment on storability and microbial control in paprika fruits. When treated with chlorine dioxide gas for 3, 6, and 12 hours and cold plasma gas for 1, 3, and 6 hours, and then packed in a carton box and stored in a 8 ± 1℃ chamber for 7 days, chlorine dioxide treated 12 hours and plasma treated 6 hours was prevented the development of E·coli and YM(yeast and mold). Accordingly, the control was treated with chlorine dioxide for 12 hours and plasma for 6 hours, packed using a carton box and 40,000 cc·m-2·day-1·atm-1 OTR film (MAP), and stored in a 8 ± 1℃ chamber for 20 days. Fresh weight loss rate during storage was less than 1% in the MAP treatments, and the visual quality of the MAP treatments was above the marketability limit until the end of storage. There was no difference in the contents of oxygen, carbon dioxide, and ethylene in the film. In the case of firmness, the chlorine dioxide treatments was low, and the Hunter a* value, which showed chromaticity, was highest in the Plasma 6h MAP treatment. Off-odor was investigated in the MAP treatments, but it was very low. The rate of mold growth on the fruit stalk of paprika was the fastest and highest in the chlorine dioxide treated box packaging treatments, and the lowest in the chlorine dioxide treated MAP treatments at the end of storage. The aerobic count in the pulp on the storage end date was the lowest in the plasma treated box packaging treatments, the lowest number of E·coli in the chlorine dioxide treated MAP treatments, and the lowest yeast & mold in the chlorine dioxide treated box packaging treatments. As a result, for the inhibition of microorganisms during paprika storage, it is considered appropriate to treat plasma for 6 hours before storage regardless of the packaging method.