• 제목/요약/키워드: frost durability

검색결과 54건 처리시간 0.027초

Estimation of frost durability of recycled aggregate concrete by hybridized Random Forests algorithms

  • Rui Liang;Behzad Bayrami
    • Steel and Composite Structures
    • /
    • 제49권1호
    • /
    • pp.91-107
    • /
    • 2023
  • An effective approach to promoting sustainability within the construction industry is the use of recycled aggregate concrete (RAC) as a substitute for natural aggregates. Ensuring the frost resilience of RAC technologies is crucial to facilitate their adoption in regions characterized by cold temperatures. The main aim of this study was to use the Random Forests (RF) approach to forecast the frost durability of RAC in cold locations, with a focus on the durability factor (DF) value. Herein, three optimization algorithms named Sine-cosine optimization algorithm (SCA), Black widow optimization algorithm (BWOA), and Equilibrium optimizer (EO) were considered for determing optimal values of RF hyperparameters. The findings show that all developed systems faithfully represented the DF, with an R2 for the train and test data phases of better than 0.9539 and 0.9777, respectively. In two assessment and learning stages, EO - RF is found to be superior than BWOA - RF and SCA - RF. The outperformed model's performance (EO - RF) was superior to that of ANN (from literature) by raising the values of R2 and reducing the RMSE values. Considering the justifications, as well as the comparisons from metrics and Taylor diagram's findings, it could be found out that, although other RF models were equally reliable in predicting the the frost durability of RAC based on the durability factor (DF) value in cold climates, the developed EO - RF strategy excelled them all.

AN EXPERIMENTAL INVESTIGATION ON MINIMUM COMPRESSIVE STRENGTH OF EARLY AGE CONCRETE TO PREVENT FROST DAMAGE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Koh, Kyung-Taek;Park, Chun-Jin;Ryu, Gum-Sung;Park, Jung-Jun;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.393-400
    • /
    • 2013
  • Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.

Optimal mix design of air-entrained slag blended concrete considering durability and sustainability

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • 제11권2호
    • /
    • pp.99-109
    • /
    • 2021
  • Slag blended concrete is widely used as a mineral admixture in the modern concrete industry. This study shows an optimization process that determines the optimal mixture of air-entrained slag blended concrete considering carbonation durability, frost durability, CO2 emission, and materials cost. First, the aim of optimization is set as total cost, which equals material cost plus CO2 emission cost. The constraints of optimization consist of strength, workability, carbonation durability with climate change, frost durability, range of components and component ratio, and absolute volume. A genetic algorithm is used to determine optimal mixtures considering aim function and various constraints. Second, mixture design examples are shown considering four different cases, namely, mixtures without considering carbonation (Case 1), mixtures considering carbonation (Case 2), mixtures considering carbonation coupled with climate change (Case 3), and mixtures of high strength concrete (Case 4). The results show that the carbonization is the controlling factor of the mixture design of the concrete with ordinary strength (the designed strength is 30MPa). To meet the challenge of climate change, stronger concrete must be used. For high-strength slag blended concrete (design strength is 55MPa), strength is the control factor of mixture design.

고강도콘크리트의 동결융해저항에 미치는 기포조직의 영향 (Effect of Air Void System of High Strength Concrete on Freezing and Thawing Resistance)

  • 김생빈
    • 콘크리트학회지
    • /
    • 제4권1호
    • /
    • pp.89-96
    • /
    • 1992
  • 콘크리트의 내동해성은 일반적으로 공기량이나 기포조직 및 분포에 따라 크게 영향을 받으며 콘크리트의 강도와도 관련이 있는 것으로 알려져 있다. 본 연구에서는 고강도콘크리트의 동결융해 저항성에 미치는 공기량 및 기포조직 특히 간격계수의 영향에 관한 실험적 연구로서 우선 압축강도는 Non-AE콘크리트를 대상으로 400-500kg/$\textrm{cm}^2$를 목표로 하였고, 실험결과 내구성지수가 10~20%정도에 불과하므로 다음단계로 공기량 2~12%인 AE콘크리트로 하여 내구성 향상을 도모하였다. 이 때 단위시멘트량, 물\ulcorner시멘트비등을 변화시킨 20종류의 콘크리트 배합에 대해 500cycle까지 동결융해시험을 실시하였다. 결론적으로 동결융해의 저항성은 물\ulcorner시멘트비 보다는 공기량과 더 밀접한 관계가 있었고 임계내구성지수에 대응하는 간격계수는 물\ulcorner시멘트비에 따라 다르다는 사실을 알 수 있었다.

Evaluation on Surface Scaling and Frost Resistance for concrete Deteriorated due to Cyclic Freezing and Thawing with Inherent Chloride

  • Kim, Gyu Yong;Cho, Bong Suk;Lee, Seung Hoon;Kim, Moo Han
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.177-185
    • /
    • 2007
  • The purpose of this study is to evaluate freezing-thawing and surface scaling resistance in order to examine the frost durability of concrete in a chloride-inherent environment. The mixing design for this study is as follows: 3 water binder ratios of 0.37, 0.42, and 0.47; 2-ingredient type concrete (50% OPC concrete and 50% ground granulated blast-furnace slag), and 3-ingredient type concrete (50% OPC concrete, 15% fly ash, and 35% ground granulated blast-furnace slag). As found in this study, the decrease of durability was much more noticeable in combined deterioration through both salt damage and frost damage than in a single deterioration through either ofthese; when using blast-furnace slag in freezing-thawing seawater, the frost durability and surface deterioration resistance was evaluated as higher than when using OPC concrete. BF 50% concrete, especially, rather than BFS35%+FA15%, had a notable effect on resistance to chloride penetration and freezing/expansion. It has been confirmed that surface deterioration can be evaluated through a quantitative analysis of scaling, calculated from concrete's underwater weight and surface-dry weight as affected by the freezing-thawing of seawater.

측구 콘크리트의 동결융해 저항성능 개선을 위한 실험적 연구 (An Experimental Study on the Improvement of Freezing-Thawing Resistance of Gutter Concrete)

  • 이회근;손유신;김한준;이승훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.577-580
    • /
    • 2006
  • This paper presents the experimental results of frost durability characteristics including freezing-thawing and de-icing salt scaling of the concrete used for gutter of the road. Mixtures were proportioned with the three level of water-binder ratio (W/B), 0.58, 0.53, and 0.48, and two binder compositions corresponding to Type I cement without any supplementary cementitious materials (OPC) and Type I cement with 30% blast-furnace slag replacement (Slag30). Also, two different solutions of calcium chloride and water that contains 0 and 8g of anhydrous calcium chloride in each 100 mL of solution, respectively, were used to evaluate their effect on the frost durability resistance. Test results showed that the Slag30 mixture exhibited higher durability factor and lower mass loss values than those made with OPC. Among the mixture tested in this work, the mixtures (OPC and Slag30) made with a relatively higher W/B of 0.58 exhibited large amount of the de-icing salt scaling regardless of calcium chloride concentration. Finally, the use of slag can be used effectively in terms of economy and frost durability of the concrete designated for gutter.

  • PDF

복합열화 환경하에서의 고로슬래그미분말 사용 콘크리트의 내구성능 평가 (A Durability Assessment on Complex Deterioration of Concrete with Ground Granulated Blast-Furnace Slag Replacement)

  • 이승훈;김형두
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.171-175
    • /
    • 2010
  • 본 연구는 동결융해, 염해 및 중성화가 복합적으로 작용하는 콘크리트 구조물의 내구성능을 평가하기 위하여 일반강도 콘크리트를 대상으로 동결수를 달리하여 동결융해 시험을 실시함으로서 염해와 동결융해 복합작용에 의한 콘크리트의 열화를 평가하였고, 염해, 동결융해 및 중성화의 세가지 열화가 복합적으로 발생되는 복합열화에 대해서는 적절한 평가방법이 부재하여 동결수에 따른 동결융해 시험 후의 시험체에 대하여 중성화 촉진시험을 실시함으로서 복합열화에 의한 콘크리트 내구성능 저하 특성을 평가하고자 하였다. 본 연구를 통하여 동결수의 종류나 물-결합재비 수준과 무관하게 고로슬래그미분말을 사용한 배합의 경우 염해와 동결융해가 동시에 복합적으로 발생되는 환경에서도 우수한 저항성능을 보이는 결과를 나타내므로 동결융해를 포함한 복합열화 환경에서 충분한 내구성 확보를 위해서는 최소한의 설계기준강도의 확보와 고로슬래그미분말 등 적절한 시멘트 결합재의 선정이 무엇보다 중요하다는 결론을 얻었다.

동절기 고강도콘크리트의 시공에 있어서 초기동해 방지에 관한 실험적 연구 (An Experimental Study on the Early Frost Resistance Properties of High-Strength Concrete in Winter Concreting)

  • 권영진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2001년도 학술논문발표회
    • /
    • pp.76-81
    • /
    • 2001
  • Recently, the structure is higher and larger, so that the application of high-strength concrete is increased, And as the development of construction skills, it is possible to place during the winter. Concrete work during winter is indispensible to shorten time of completion and cut costs. When concrete work during winter is placed, it has anxiety that concrete freeze at low temperature. As repetition of concrete's freezing cause reduction of durability, it is necessary for mixing to pay attention to air content and W/C ratios. Accordingly, in this study, we estimate the frost resistance by air content and W/C ratios, and development of strength after early-frost damage in the high-strength concrete during the cold weather. In this study, it could be confirmed that factors which were air content, W/C ratios and early curing period, affected on the frost resistance.

  • PDF

광물질혼화재 혼합 수중불분리성 콘크리트의 물성 및 동결융해 저항성 (Freezing and Thawing Resistance and fundamental Properties of Antiwashout Underwater Concrete Containing Mineral Admixtures)

  • 문한영;신국재;송용규
    • 콘크리트학회논문집
    • /
    • 제17권3호
    • /
    • pp.455-464
    • /
    • 2005
  • 수중불분리성 콘크리트의 적용 사례가 점차 증대되고 있는 추세임에도 불구하고 역사가 짧은 탓으로 신뢰성 등에 대한 문제점을 지적하고 있다 특히 수중불분리성 콘크리트는 동결응해에 대한 저항성이 매우 취약한 것으로 알려져 있어 일본토목학회에서는 동결융해작용을 받는 지역에서는 사용해서는 않된다고 규정하고 있다. 본 연구에서는 수중불분리성 콘크리트의 내구성을 향상시키기 위한 목적으로 광물질혼화재 3종류로 제조한 수중불분리성 콘크리트의 기초물성과 동결응해 저항성에 대한 실험을 실시하였다. 본 연구실험결과 FA20 및 SG50의 유동성 및 장기강도는 기준콘크리트 보다 양호한 경향을 보인 반면 현탁물질량은 약간 큰 값을 나타내었다. 한편 MK10의 경우, 빠른 수화반응으로 현탁물질량과 압축강도는 양호한 결과를 나타내었으나 유동성은 다소 떨어지는 문제점이 있었다. 한편, 수중불분리성 콘크리트의 동결응해 저항성은 셀룰로오스계 수중불분리성 혼화제에 의한 크고 불규칙한 갇힌공기 때문에 광물질혼화재를 혼합한 경우에도 효과가 적었으나 SG50과 MK10의 공기량 $6{\pm}0.5\%$의 경우, 동결응해 저항성이 약간 향상되는 결과를 얻었다. 그러나 고로슬래그 미분말의 분말도를 달리한 경우 분말도가 증가할수록 활성도가 높아져 동결응해 저항성이 향상되는 경향을 나타내었다.

고강도 콘크리트의 동해저항에 관한 기포조직의 영향 (Effect of Air Void Organization to Frost-Resistance in High-Strength Concrete)

  • 김생빈;홍찬홈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.5-10
    • /
    • 1991
  • This study was performed to find out the effect about the spacing factor and durability factor to evaluate the durability of concrete in high-strength concrete with freezing and thawing as following each condition, 1) unit cement content : 500kg/$\textrm{m}^3$, 550kg/$\textrm{m}^3$ 2) water/cement ratio : 25%, 30%, 35% 3) air content : below 1.5%, 1.6~3.5%, 4~6%, over 7% From the results tested, a variation of air content was more effective to the durability of concrete than that of water/cement ratio and unit cement content.

  • PDF