• Title/Summary/Keyword: front pressure effect

Search Result 167, Processing Time 0.028 seconds

Numerical Study based on Three-Dimensional Potential Flow in Time-Domain for Effect of Wave Field Change due to Coastal Structure on Hydrodynamic Performance of OWC Wave Energy Converter (연안 구조물로 인한 파동장의 변화가 진동수주 파력발전장치 유체성능에 미치는 영향에 관한 3차원 시간영역 포텐셜 유동 기반의 수치 연구)

  • Kim, J.S.;Nam, B.W.;Park, S.;Kim, K.H.;Shin, S.H.;Hong, K.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.150-152
    • /
    • 2019
  • In this study, the effects of the wave field changes due to the coastal structure on the hydrodynamic performance of the OWC wave energy, converter are analyzed using a three-dimensional numerical wave tank technique (NWT). The OWC device is simulated numerically by introducing a linear pressure drop model, considering the coupling effect between the turbine and the OWC chamber in the time domain. The flow distribution around the chamber is different due to the change of reflection characteristics depending on the consideration of the breakwater model. The wave energy captured from the breakwater is spatially distributed on the plane of the front of the breakwater, and the converted pneumatic power increased when concentrated in front of the chamber. The change of the standing wave distribution is repeated according to the relationship between the incident wavelength and the length of the breakwater, and the difference in energy conversion performance of the OWC was confirmed.

  • PDF

Snowfall and Ocean Conditions Characteristic in the West Sea of Korea in Winter (동계 서해의 해황과 적설 특성)

  • Go, Woo-Jin;Kim, Sang-Woo;Jang, Lee-Hyun;Choi, Yong-Kyu;Yang, Joon-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.185-189
    • /
    • 2008
  • This study was conducted to find out the effects of relationship between ocean conditions and snowfall when cold and dry continental air mass passes through the West Sea of Korea. Route of continental high atmospheric pressure can cause effect on snowfall at the west regions (Inchoen, Gunsan, Mokpo) of the Korean Peninsula. The continental high atmospheric pressure extend from the southern China to western coastal region of the Korean Peninsula during the December, and it extend from the north side of China through Bohai Sea and Yodong Peninsula to central area of the Korean Peninsula during the February. Therefore, more snowfall recorded in Incheon is higher during Feb. than Dec.. whereas Gunsan and Mokpo is the opposite. The heavy snowfall at the western coastal region of Korea was caused by loss of the heat from the ocean to air when it's higher than $100W/m^2$. the heavy snowfall was also observed when the arrangement of continental high atmospheric pressure and low pressure was high at the West and low at the East, which formed a front in West and when the wind blow from the North or North West at the speed of $4\sim8m/sec$. There were not much relation between salinity in the western sea and snowfall in the western coastal region of Korea.

  • PDF

Arm Armor System Performance Study: Net Effect (Perceptual Response) Analysis

  • Nam, Jin-Hee;Peksoz, Semra;Branson, Donna H.;Cao, Huantian
    • International Journal of Human Ecology
    • /
    • v.13 no.1
    • /
    • pp.117-128
    • /
    • 2012
  • This study compares the net effect of wearing different shoulder/arm armor systems on garment impediment perception and wearer acceptability. Two independent variables in this study were armor systems and shoulder/ arm movements. There were four armor systems of control garment and arm armor systems A, B, and C as well as five types of arm/shoulder movements, (shoulder flexion, should extension, shoulder abduction, shoulder horizontal flexion, and shoulder horizontal extension). Ten male volunteers wearing size medium battle dress uniform (BDU) with recent relevant military experience participated in this study. The volunteers performed shoulder/arm movements (while wearing each armor treatments) and completed the garment impediment perception as well as wearer acceptability scales. The body areas of neck side, shoulder top, and armscye front showed the highest frequency of reported impediments. Resistance to movement and localized pressure were the most frequently mentioned types of impediment. The armor system B had the most areas of impediment, and was rated as more restrictive than the control garment and armor system A for each movement. For wearer acceptability, no significant differences were found between the control garment and armor system A for all eight items; this indicated that subjects did not perceive a difference between wearing the control garment and armor system A. There was a trend for wearer acceptability to decrease from wearing the control garment to armor systems A to C to B.

Development of a Coverall Design for Infant Body Shapes (유유아 체형에 적합한 커버롤 디자인 개발)

  • Lee, Yoon-Kyung;Kim, Min-Ja;Nam, Yun-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.2
    • /
    • pp.189-199
    • /
    • 2010
  • This study develops a coverall design for the body shape and movement of infants. This research analyzed these processes: 1. The current coverall styles preferred for infants. 2. The appropriate products for the real size, body shape, movement, and fit of infants. 3. The observations of the 6 months to 9 months movement and development of infants. 4. The design and creation of a new coverall base in this study, and to check the suitable test the developed coverall design for the infant. The result of this study are: A coverall for infants that lie or crawl on the floor must avoid opening in the center front and a gore has to be added at the crotch of the pants for the better movement of infants. These ways provide infants a neat appearance and easy movement. The test of developed designs shows that the developed coverall design covers the size gap of the trunk loop according to the growth of the infant and the movement of the legs; in addition it provides a positive aesthetic effect. The waistline in the developed coverall (a waistline that should exist lower than the body waistline of the infant) can reduce seam stress because the pressure of the seam line can be absorbed in a dipper. It is one of the suitable design points for infants lying prone all day long in this study.

The Effect of Rehabilitation Training Programs on the Kinetic and Kinematic Parameters During Sit-To-Stand in Chronic Stroke Patients (만성편마비 환자의 재활 운동 유형이 일어서기 동작의 운동학 및 운동역학적 변인에 미치는 영향)

  • Yu, Yeon-Joo;Yoon, Te-Jin;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.121-134
    • /
    • 2006
  • The purpose of this study was to analyze the effect of different types of rehabilitation training program on the kinetic and kinematic parameters during sit-to-stand movement(STS) in chronic stroke patients. Two groups of hemiparetic patients, experimental and control, participated in the study. The experimental group participated in a 10-week training program (three sessions/wk, $1{\sim}1.5\;hr/session$) consisting of a warm-up, aerobic exercises, lower extremity strengthening. and a cool-down. The control group participated in an aerobic exercise. Three dimensional kinematic analysis and force platform; were used to analyze the duration of STS, lower extremity angle, and weight bearing ability. The experimental group which had more strength of lower extremity displayed decrease in duration of STS. However, the control group showed increases in duration during sit-to-stand movement. The control group flexed their trunk more than the group did Therefore, it took more time to extend their trunk during STS. The duration in sit-to-stand was affected by the strength of lower extremity and the angle of trunk movement. The angles of ankle and knee joint had an influenced on duration of STS. The post experimental group performed with their feet near the front leg of the chair during sit-to-stand, therefore the duration was decreased. The repetitive sit-to-stand movements as a resistance exercise was effective to hemiparetic patients in learning mechanism of sit-to-stand. The control group showed decreased differences in the vertical ground reaction forces between paretic and non-paretic limbs. Their training program included strengthening exercise that may help improving weight bearing ability. The control group showed increases in the center of pressure in the anteroposterior and mediolateral displacement. This means that the stability of movement was low in the control group. Their training program which combined aerobic and strengthening exercises that are more effective to improve the stability of movement.

The Effect of Cure History on the Fluorescence Behavior of an Unsaturated Polyester Resin with A Fluorescence Probe

  • Donghwan Cho;Yun, Suk-Hyang;Bang, Dae-Suk;Park, Il-Hyun
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.282-289
    • /
    • 2004
  • We have extensively characterized the fluorescence behavior of unsaturated polyester (UP) resin in the absence and presence of a 1,3-bis-(l-pyrenyl)propane (BPP) fluorescent probe at various dynamic and isothermal cure histories by means of a steady-state fluorescence technique using a front-face illumination equipment. In addition, we explored the effect of the fluorescence intensity on the relaxation of the fluorescent probe in the UP resin by resting the dynamically and isothermally cured resin at ambient temperature and pressure for 24 h. The monomer fluorescence intensity, which has two characteristic peaks at 376 and 396nm, changed noticeably depending on the cure temperature and time and provided important information with respect to the molecular and photophysical responses upon curing. The result of the fluorescence study indicates that the increased local viscosity and restricted molecular mobility of the UP resin surrounding the BPP probe after curing are both responsible for the enhancement of the monomer fluorescence intensity. Our results also demonstrate that once the BPP probe has enough time to rearrange and become isolated prior to fluorescence, a sufficient amount of fluorescence is emitted. Therefore, we note that the fluorescence behavior of this UP resin system is influenced strongly by the relaxation process of the fluorescent probe in the resin as well as process used to cure the resin.

The characteristics of the flow field around canvas kite using the CFD (CFD를 이용한 범포 주위의 유동장 특성)

  • Bae, Bong-Seong;Bae, Jae-Hyun;An, Heui-Chun;Park, Seong-Wook;Park, Chang-Doo;Jeong, Eui-Cheol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.3
    • /
    • pp.169-178
    • /
    • 2006
  • This research aims at establishing the fundamental characteristics of the kite through the analysis of the flow field around various types of kites. The approach of this study were adopted for the analysis; visualization by CFD(computational fluid dynamics). Also, the lift/drag and PIV(particle image velocimetry) tests of kites had been performed in our previous finding. For this situation, models of canvas kite were designed by solidworks(design program) for the CFD test using the same conditions as in the lift/drag tests. And we utilized FloWorks as a CFD analysis program. The results obtained from the above approach are summarized as follows: According to comparison of the measured and analyzed results from mechanical tests, PIV and CFD test, the results of all test were similar. The numerical results of lift-coefficient and drag-coefficient were 5-20% less than those of the tests when attack angle is $10^{\circ},\;20^{\circ}\;and\;30^{\circ}$. In particular, it showed the 20% discrepancy at $40^{\circ}$. The numerical results of the ratio of drag and lift were 8-13% less than those of the tests at $10^{\circ}$ and 10% less than those of the tests at $20^{\circ},\;30^{\circ}\;and\;40^{\circ}$. Pressure distribution gradually became stable at $10^{\circ}$. In particular, the rectangular and triangular types had the centre of the high pressure field towards the leading edge and the inverted triangular type had it towards the trailing edge. The increase of the attack angle resulted in the eddy in order of the rectangular, triangular and inverted triangular type. The magnitude of the eddy followed the same order. The effect of edge-eddy was biggest in the triangular type followed by the rectangular and then the inverted triangular type. The action point of dynamic pressure as a function of the attack angle was close to the rear area of the model with the small attack angle, and with large attack angle, the action point was close to the front part of the model.

A Numerical Study of Building Orientation Effects on Evacuation Standard in Case of Toxic Gas Leakage (독성 가스 누출 시 건물 방향이 대피 기준에 미치는 영향에 관한 수치 해석 연구)

  • Seungbum Jo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.12-18
    • /
    • 2023
  • The effective evacuation strategy according to the accident scenario is crucial to minimize human casualties in the event of toxic gas leak accidents. In this study, the effect of the direction of a building and the location of an industrial complex on the increase in indoor concentration and outdoor diffusion was examined under the same leakage conditions, and effective evacuation criteria were established. In addition, the guidelines for building directions were suggested when constructing buildings that would mitigate human damage caused by chemical accidents. Three scenarios where buildings faced the front, side, and rear of the leakage direction were investigated through CFD simulations. The results revealed that when the building faced the industrial complex, both indoor and outdoor average gas concentrations increased significantly, reaching up to 120 times higher than the other two orientations. Moreover, the indoor space was filled with toxic gas substances more than twice in the same time due to the rapid increase of indoor concentration rate. In cases where the building's windows were positioned at the front, toxic gas stagnation occurred around the building due to pressure differences and reduced flow velocities. Based on our findings, the implementation of these guidelines will contribute to safeguarding residents by minimizing exposure to toxic gas during chemical accidents.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

Effect of the Amount of a Lubricant and an Abrasive in the Friction Material on Friction Characteristics (자동차 제동시 나타나는 마찰특성에 관한 연구(I. 고체 윤활제($Sb_2S_3$)와 연마제($ZrSiO_4$)의 함량에 따른 영향)

  • Jang, Ho
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 1997
  • Frictional behavior of three automotive friction materials (brake pads) containing different amounts of antimony trisulfide ($Sb_2S_3$) and zirconium silicate ($ZRSiO_4$) were investigated using a front brake system. The friction materials were tested on a brake dynamometer (dyno) with gray cast iron rotors. The dynamometer(dyno) test simulated the dragging of a ehicle maintaining 70 km/h and vehicle stops from 100 km/h using 20 different combinations of initial brake temperature (IBT) and input pressure (IP). The results showed a strong influence of the relative amount of $Sb_2S_3$ and $ZrSiO_4$ in friction materials on friction characteristics. Friction stability was improved with the higher concentration of $Sb_2S_3$ in the friction material. Torque variation during drag cycle was increased with an increase of the $ZrSiO_4$ concentration in the friction material. Average friction coefficient and the wear rate of the friction material increased by using more aggressive friction materials containing more $ZrSiO_4$ and less $Sb_2S_3$. Generation of the disk thickness variation (DTV) increased when friction materials with higher concentration of $ZrSiO_4$ were used Careful examination of DTV change showed that aggressiveness of the friction material played an important role in determining torque variation.