• Title/Summary/Keyword: front impact

Search Result 296, Processing Time 0.027 seconds

Simulation Analysis on Impact of Automotive Body (차체의 충돌에 관한 시뮬레이션 해석)

  • Cho, Jae-Ung;Min, Byoung-Sang;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.477-482
    • /
    • 2009
  • This study analyzes the result with dynamic simulation about deformation according to time when a car impacts bollard. These results are shown as followings. The maximum deformation is shown at the lower part of front grass in case of the impact of front or passenger seat but this deformation is shown at the lower part of rear bumper in case of double impact. The maximum equivalent stress is shown at the upper part by the side grass of driver seat at the elapsed time of 0.00075 second after impact in case of the impact of front or passenger seat but this deformation is shown at the front bonnet at the elapsed time of 0.004 second after the additional impact in case of double impact. The maximum total deformation or equivalent stress is shown nearly same in case of the impact of front or passenger seat. But the value of this deformation or equivalent stress in case of the impact of front or passenger seat is shown with 2 times or more than 17% respectively as this value in case of double impact.

  • PDF

Experimental Study on the Structural Safety of the Tractor Front-End Loader Against Impact Load

  • Park, Young-Jun;Shim, Sung-Bo;Nam, Ju-Seok
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.153-160
    • /
    • 2016
  • Purpose: This study was conducted to experimentally investigate the structural safety of and identify critical locations in a front-end loader under impact loads. Methods: Impact and static tests were conducted on a commonly used front-end loader mounted on a tractor. In the impact test, the bucket of the front-end loader with maximum live load was raised to its maximum lift height and was allowed to free fall to a height of 500 mm above the ground where it was stopped abruptly. For the static test, the bucket with maximum live load was raised and held at the maximum lift height, median height, and a height of 500 mm from the ground. Strain gages were attached at twenty-three main locations on the front-end loader, and the maximum stresses and strains were measured during respective impact and static tests. Results: Stresses and strains at the same location on the loader were higher in the impact test than in the static test, for most of measurement locations. This indicated that the front-end loader was put under a severe environment during impact loading. The safety factors for stresses were higher than 1.0 at all locations during impact and static tests. Conclusions: Since the lowest safety factor was higher than 1.0, the front-end loader was considered as structurally safe under impact loads. However, caution must be exercised at the locations having relatively low safety factors because failure may occur at these locations under high impact loads. These important design locations were identified to be the bucket link elements and the connection elements between the tractor frame and front-end loader. A robust design is required for these elements because of their high failure probability caused by excessive impact stress.

Structural Safety Analysis of Car Body (차체의 구조 안전 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.12-16
    • /
    • 2008
  • The state of deformation and stress and the structural safety are studied at the main frame composed with car body by the impact of front, offset and overturn in this study. The values of maximum deformation and von-Mises stress in case of offset impact are 2 to 3 times as high as those in case of front or offset impact at the parts of front and middle legs of roll cage. The case of front impact is of the greatest safety as compared with the case of offset or overturn impact. As there is a great stress on the side in case of overturn impact, this value is more than 2 times as low as that in case of offset impact. But there is a great possibility of overturn by the buckling on both sides in case of overturn impact.

  • PDF

Crash Performance of Front Side Member Impacted with Angle (프론트 사이드 멤버의 경사 충돌 성능)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.52-59
    • /
    • 2014
  • Front impacted SUV vehicle shows that the front parts of side members are collapsed by the bending due to the transverse load exerted at the end of side members. Side member models were impacted with various angles in order to study the crash performance according to the impact angle. Even for the small impact angle of $10^{\circ}$, crash performance seriously deteriorated and the deformations for impact angle $15^{\circ}$ were similar to those from the front body impact analysis. In addition, the angled front impact analysis for the straight member with hat section was carried out and the effects of inner reinforcement shape on crash performance was investigated.

Damage of Car Body and Passenger at Impact Contact (충돌 접촉에 있어서의 차체와 승객의 손상)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.280-283
    • /
    • 2011
  • This study investigates the durability of car body and the safety of passenger inside car body in the case of the impact contact at passenger and car body. In case of front impact contact, maximum von Mises equivalent stress and principal stress become 3240.7MPa and 1634MPa respectively at the rear part of car body and the neck of dummy. And maximum total deformation occurred with 14.145mm at the hand of dummy. In case of side impact contact, maximum von Mises equivalent stress and principal stress become 7687.9MPa and 1690.7MPa respectively at the front part of car body and the lap of dummy. And maximum total deformation occurred with 16.414 mm at the foot of dummy. In case of rear impact contact, maximum von Mises equivalent stress and principal stress become 2366.6MPa and 1447MPa respectively at the front part of car body and the neck of dummy. And maximum total deformation occurred with 7.548mm at the rear part of car body. As the maximum von-Mises stress at side impact is shown with more than 700MPa as over two times at front or rear impact the danger of car body is increased. The great possibility of damage is shown at neck and hand of dummy with more than total displacement of 10mm.

Basic Study on Impact Analysis of Automobile (자동차 충돌 해석에 관한 기초 연구)

  • Cho, Jae-Ung;Min, Byung-Sang;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.64-70
    • /
    • 2009
  • This study is to analyze the impact of automotive body with computer simulation. The total deformation, equivalent strain and strain and principal stress are analyzed respectively in case of front, rear and side impacts. The maximum total deformation of side impact is more than 6 times as large as that of rear impact. The maximum equivalent strain or stress of side impact is more than 4 times as large as that of rear impact. These deformation, strain and stress of front impact are a little more than those of rear impact. The maximum principal stress of side impact is more than 4.5 times as large as that of rear impact. This stress of front impact is a little more than that of rear impact.

  • PDF

Axial Impact Collapse Analysis on Front-End Side Members of Vehicles by FEM (FEM에 의한 차량전면부 사이드부재의 축방향 충격압궤 해석)

  • Cha Cheon-Seok;Chung Jin-Oh;Yang In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • The front-end side members of vehicles(spot welded hat and double hat shaped section members) absorb most of the impact energy in a case of front-end collision. In this paper, specimens with various spot weld pitches have been tested with a high impact velocity of 7.19m/sec(impact energy of 1034J). The axial impact collapse simulation on the sections has been carried out to review the collapse characteristics of these sections, using an explicit finite element code, LS-DYNA3D. Comparing the results with experiments, the simulation has been verified; the energy absorbing capacity is analyzed and an analysis method is suggested to obtain exact collapse loads and deformation collapse modes.

Weight Reduction of Front Side Member with High Strength Steel (고장력강 적용을 통한 프런트 사이드 멤버의 경량화)

  • 이상곤;최창현;신철수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1487-1490
    • /
    • 2004
  • In this study, the crash analysis was carried out to evaluate the influence of steel sheet grade and thickness on weight reduction and crash characteristics for front side member which had an important role of absorbing the impact energy during front and side impact. In order to achieve the aim of this study the reverse engineering was applied to obtain 3D model of front side member from BIW for the FE simulation. In the result, the crashworthiness of front side member is considerably improved with steel sheet strength and thickness increase. Also, the weight reduction in automotive parts for the improvement of the fuel efficiency can be easily achieved with applying high strength steel without deterioration of crashworthiness.

  • PDF

Bumper Stay Design for Improving Frontal Crash Performance of Front Body (전방 차체의 정면 충돌성능 향상을 위한 범퍼 스테이 설계)

  • Kang, Sungjong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • Front side member of the front impacted vehicle plays a key role in minimizing the impacting load transferred to the compartment. To perform that required function, axial collapse should be dominant during side member crashing and, prior to designing side member, it is crucial to minimize bending moment occurred at the front end. In this study, for FE model of a SUV front body, front impact analyses were carried to find out bumper stay design which effectively develope axial collapse in the side member. As a previous work, the thickness of side member reinforcement were changed. Next, the inner thickness of bumper stay was increased. Also, the bead shape and location were modified. Final front body model showed much more axial collapsed mode and enhanced crash performance. In addition, a stay of octagon section was adopted and that model exhibited distinctive increase in impact energy absorption.

Design Improvement of Front-End Loader for Tractor to Reduce Stress Concentration and Evaluation of Impact Safety (응력집중 저감을 위한 트랙터용 프론트 로더의 설계개선 및 충격 안전성 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.109-119
    • /
    • 2018
  • The purpose of this study is to evaluate the structural safety of the front-end loader for the 90 kW class of agricultural tractors in impact test conditions. Deformation and stress on the loader under the impact test conditions are analyzed using the commercial finite element analysis software ANSYS. In previous research dealing with the initial design of the loader, the maximum stress occurred in the mount and exceeded the yield strength of the material. In this paper, an improved design of the mount of the loader was proposed to reduce the stress concentration in the initial design. The safety of the improved design was verified by performing rigid-body dynamics analysis, transient structural analysis, and static structural analysis under three impact test conditions: a drop and catch test, a corner pull test, a corner push test. It was found that the local stress concentration in the mount that appeared in the initial design was greatly reduced in the improved design, and that the maximum stresses occurred in the three impact test conditions are smaller than the yield strength. It is expected that the design improvement of the mount proposed in this study and the method of analysis may be effectively used to enhance structural safety in the development of new model front loaders in the future.