• Title/Summary/Keyword: fringe field switching mode

Search Result 71, Processing Time 0.036 seconds

Study on Electro-optic Characteristics of Fringe-field Switching Twisted Nematic Mode using a Liquid Crystal with Negative Dielectric Anisotropy (유전율 이방성이 음인 액정을 이용한 Fringe-field Switching Twisted Hematic 모드의 전기광학 특성 연구)

  • 송일섭;신성식;이종문;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.530-535
    • /
    • 2004
  • We have studied 90$^{\circ}$ twisted nematic mode switching by fringe electric field(F-TN mode) using a liquid crystal (LC) with negative dielectric anisotropy. In the device, two polarizers are parallel each other, electrodes exist only on bottom substrate, and one of rubbing direction is coincident with polarizer axis. Therefore, the cell shows a black state before a voltage is applied. With a bias voltage generating fringe-electric field, the LC twists perpendicular to fringe electric field such that the LCs are almost homogeneously aligned except near the bottom surface since the negative type of the LC is used. Consequently, the new device exhibits much wider viewing angle than that of the conventional TN mode due to in-plane switching and relatively high transmittance since the LC director above whole electrode area aligns parallel to the polarizer axis.

Electro-Optic Characteristics according to Distance between Pixel Electrodes in Fringe In-plane field Switching mode (화소 전극 간 거리가 Fringe In-plane field Switching mode의 전기 광학 특성에 미치는 영향)

  • Kim, Min-Su;Park, Ji-Woong;Jung, Jun-Ho;Ha, Kyung-Su;Lim, Young-Jin;Lee, Myong-Hoon;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.337-338
    • /
    • 2008
  • We have studied electro-optic characteristics of a high performance liquid crystal display using Fringe In-plane field Switching (FIS) mode. The strong electric fields cause more liquid crystals to reorient almost in plane above and between the pixel electrodes. As a result, the operation voltage is lower and transmittance is higher than those of Fringe Field Switching (FFS) and In-Plane Switching (IPS) modes. Apparently, the transmittance depends on voltage applied at the configurations of FIS mode which are proposed. Therefore, we have studied certain length of between electrodes for maximum transmittance and light intensity.

  • PDF

A Single Gap Transflective Display using Fringe Field Switching Mode (FFS(Fringe Field Switching)모드를 이용한 단일갭 반투과형 액정 디스플레이)

  • Chin, Mi-Hyung;Jeong, Eun;Lim, Young-Jin;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.388-389
    • /
    • 2007
  • A transflective liquid crystal displays driven by fringe field switching mode of new concept is being suggested. The FFS mode is known to have the different twist angle distribution at the position when an operating voltage is applied. We make the cell design by using the different twist angle which has some region decided on transmissive region and other region used to reflective region. By optimizing simulation condition in the concept, we proposed new tansflective LCDs using FFS mode with single gap and single gamma characteristics.

  • PDF

A High Quality Fringe-Field Switching Display for Transmissive and Reflective Type

  • Lee, Seung-Hee;Choi, Soo-Han
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.5-6
    • /
    • 2000
  • Fringe-field switching (FFS) technology exhibiting a high image quality has been developed. In this paper, one pixel concept, manufacturing process, materials, and electro-optic characteristics of FFS mode comparing with conventional in-plane switching mode, and its possible application to reflective type will be discussed.

  • PDF

Electro-optic Characteristics of the fringe-field Driven-reflective Liquid Crystal Display with One Polarizer (1매의 편광판으로 구성된 반사형 Fringe-field Switching Mode의 전기 광학 특성)

  • 정태봉;박지혁;이종문;김용배;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.131-137
    • /
    • 2003
  • We have performed computer simulation to obtain electro-optic chracteristics of reflective liquid crystal display (LCD) using wide viewing angle LC mode, fringe field switching(FFS). Unlike other reflective LCD modes, in the FFS mode, the LC director in plance so an application to reflective display consisted of polarizer, LC layer and reflector is possible. when an incident light is 550mm, the optimal cell retardation value is 0.1365${\mu}$m and the efficiency of reflectivity is high over 90% with very little wavelength dispersion. Further, we have studied a new reflective display with polarizer, optical compensation film with half plate, LC plus reflector. The display with optimized cell parameters shows high contrast ratio (CR) over 130 with high light efficiency over 90% at normal direction and the CR greater than 5 exists over 60$^{\circ}$ of polar angle in all directions.

A High Quality Fringe-Field Switching Display for Transmissive and Reflective Types

  • Lee, Seung-Hee;Hong, Seung-Ho;Jeong, Yeon-Hak;Kim, Hyang-Yul
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.9-13
    • /
    • 2000
  • In liquid crystal displays, the display mode that represents initial liquid crystal alignment and method of applying voltage, mainly determines the image quality of display. Recently we have developed the fringe-field switching (FFS) mode exhibiting high image quality. In this paper, a pixel concept, manufacturing process, materials, and electro-optic characteristics of the FFS mode comparing with conventional in-plane switching mode, and its possible application to reflective type are discussed.

  • PDF

Authentic-color Characteristic of the Fringe-field Switching Mode using a Liquid Crystal with Negative Dielectric Anisotropy (유전율 이방성이 음인 액정을 이용한 Fringe-field Switching Mode의 Authentic-color 특성)

  • Song, Je-Hoon;Choi, Yoon-Seok;Moon, Dae-Gyu;Han, Jeong-In;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.633-640
    • /
    • 2004
  • We have studied color tracking of a fringe-field driven homogenously aligned nematic liquid crystal (LC) cell with negative dielectric anisotropy and compared it with other devices such as the twisted nematic(TN) and in-plane switching(IPS) modes. According to studies, the TN device shows bluish color at grey scale and even at a low retardation cell it cannot avoid color tracking. The authentic IPS device having cell retardation value of 0.23 ${\mu}{\textrm}{m}$ also shows bluish white color. However, the FFS device shows excellent color tracking characteristics even at high retardation value of the cell while keeping high transmittance and greenish white.

Cell Gap Dependent Electrode-Optic Characteristics of Fringe-Field Switching Mode using a Liquid Crystal with Negative Dielectric Anisotropy (유전율 이방성의 음인 액정을 이용한 Fringe-Field Switching mode의 cell gap 변화에 따른 전기광학 특성)

  • 정송희;김향율;이종문;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.914-922
    • /
    • 2003
  • The FFS (fringe-field switching) mode was known to exhibit both a wide viewing angle and high transmittance, especially when using a liquid crystal with negative dielectric anisotropy. We have studied cell gap-dependent electrode-optic characteristics of the FFS mode using the LC with negative dielectric anisotropy. In case of a small cell gap of 2 ${\mu}$m, the transmittance at the center of pixel and common electrodes is relatively low because effect of surface anchoring that holds the LC to the initial state is larger than that in a large cell gap of 4 .urn such that the LCs in those regions cannot rotate enough. However, in case of a large cell gap of 4 .urn, the effect of surface anchoring becomes relatively small so that the LCs at the center of pixel and common electrode can be twisted enough by applied voltage, giving rise to high transmittance. Therefore, we can conclude that the light efficiency is dependent on the cell gap.

Wide Viewing Angle Transflective Liquid Crystal Display using Fringe-Field Switching Mode (FFS 모드를 이용한 광시야각 반투과형 액정 디스플레이)

  • Song, Je-Hoon;Lim, Young-Jin;Park, Chi-Hyuk;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.567-570
    • /
    • 2004
  • We have designed a single gap transflective liquid crystal display (LCD) driven by a fringe electric field, in which the LCs are homogeneously aligned in the initial state. In the reflective and transmissive areas, the degrees of the rotation of the LC director are $22.5^{\circ}$ and $45^{\circ}$, respectively. Utilizing this mechanism and an in-cell retarder with a quarter-wave plate that is used below the LC layer, the transflective LCD using fringe-field switching (FFS) mode is realized.

  • PDF

Study on the Quantitativity of Image Sticking in the Fringe-field Switching(FFS) Mode (Fringe-Field Switching (FFS) 모드에서 잔상 정량화에 관한 연구)

  • Seen, Seung-Min;Kim, Mn-Sook;Jung, Yeon-Hak;Kim, Hyang-Yul;Kim, Seo-Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.720-723
    • /
    • 2005
  • We studied the quantitativity of the image sticking which is occured by the resicual DC in the fringe-electric field switching (FFS) mode. Actually, in the FFS mode driven by the strong fringe electric field, the asymmetric residual DC was formed in the bottom substrate. It made the impurity ion stick to the alignment layer such as polyimde layer. Thus, the differnece of the luminance existes after the stress check pattern is applied to the panel so that we can see the image sticking. This image sticking decreases as the residual DC value between specific patterns decreases. Therefore, it is necessary to control the residual DC for the FFS mode with the high image quality. It is possible to eliminate the image stiking when the extra pixel voltage is applied through the circuit tunning for reducing the difference of residual DC accroding to the panel position.