• Title/Summary/Keyword: frictional properties

Search Result 258, Processing Time 0.02 seconds

Physiological Signal Analyses of Frictional Sound by Structural Parameters of Warp Knitted Fabrics

  • Cho Gilsoo;Kim Chunjeong;Cho Jayoung;Ha Jiyoung
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.89-94
    • /
    • 2005
  • The purpose of this study is to offer acoustical database of warp knitted fabrics by investigating frictional sound properties and physiological responses according to structural parameters such as construction, lap form, and direction of mutual guide bar movement. Fabric sounds of seven warp knitted fabrics are recorded, and Zwicker's psychoacoustic param­eters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) - are calculated. Also, physiological responses evoked by frictional sounds of warp knitted fabrics are measured such as electroencephalogram (EEG), the ratio of high fre­quency to low frequency (HF/LF), respiration rate (RESP), skin conductance level (SCL), and photoplethysmograph (PPG). In case of constructions, frictional sound of sharkskin having higher loudness(Z) and fluctuation strength(Z) increases RESP. By lap form, open lap has louder and larger fluctuating sound than closed lap, but there aren't significant difference of physi­ological responses between open lap and closed lap. In direction of mutual guide bar movement, parallel direction evokes bigger changes of beta wave than counter direction because of its loud, rough, and fluctuating sound. Fluctuation strength(Z) and roughness(Z) are defined as important factors for predicting physiological responses in construction and mutual guide bar movement, respectively.

Effects of recycling on the mechanical properties and the surface topography of Nickel-Titanium alloy wires (재생 과정이 니켈-티타늄 호선의 물리적 성질과 표면 거칠기에 미치는 영향)

  • Lee, Sung-Ho;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.453-465
    • /
    • 2000
  • The purpose of this study was to investigate the change of mechanical properties, surface topography and frictional force of various nickel titanium wires after recycling. Three types of nickel-titanium wires and one type of stainless steel wire were divided to three groups: as-received condition(T0:control group), treated in artificial saliva for four weeks(T1) and autoclaved after being treated in artificial saliva(T2). Some changes were observed for the selected mechanical properties in tensile test, surface topography by means of SEM and 3D profilogram, and frictional coefficient. The findings suggest that: 1. Nickel-titanium wires demonstrated no statistically significant differences in maximum tensile strength, elongation rate and modulus of elasticity, but stainless steel wire demonstrated statistically significant differences in maximum tensile strength, elongation rate and modulus of elasticity between the groups(p<0.05). 2. NiTi, Optimalloy, Stainless Steel wires demonstrated increased pitting and corrosion in SEM finding. 3. Recycled NiTi, Optimalloy and stainless steel wires demonstrated significantly greater surface roughness(Ra and Rq) through 3D profilogram when compared with the control wires(p<0.05), but Sentalloy didn't demonstrate significant difference. 4. Recycled NiTi, Optimalloy and stainless steel wires demonstrated significantly greater maximum frictional coefficient when compared with the control wires(p<0.05), but Sentalloy didn't demonstrate significant difference The changes of surface roughness and frictional coefficient in NiTi and Optimalloy had no clinical implication. Consequently recycled nickel titanium wires demonstrated no clinical problem in tensile properties, surface topography and frictional coefficient.

  • PDF

Characteristics of Rustling Sound of Laminated Fabric Utilizing Nano-web (나노웹을 이용한 라미네이트소재의 마찰음 특성)

  • Jeong, Tae-Young;Lee, Eu-Gene;Lee, Seung-Sin;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.620-629
    • /
    • 2013
  • This study examines the rustling sound characteristics of electrospun nanofiber web laminates according to layer structures. This study assesses mechanical properties and frictional sounds (such as SPL); in addition, Zwicker's psychoacoustic parameters (such as Loudness (Z), Sharpness (Z), Roughness (Z), and Fluctuation strength (Z)) were calculated using the Sound Quality Program (ver.3.2, B&K, Denmark). The result determined how to control these characteristics and minimize rustling sounds. A total of 3 specimens' frictional sound (generated at 0.63 m/s) was recorded using a Simulator for Frictional Sound of Fabrics (Korea Patent No. 10-2008-0105524) and SPLs were analyzed with a Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured with a KES-FB system. The SPL value of the sound spectrum showed 6.84~58.47dB at 0~17,500Hz. The SPL value was 61.2dB for the 2-layer PU nanofiber web laminates layered on densely woven PET(C1) and was the highest at 65.1dB for the 3-layer PU nanofiber web laminates (C3). Based on SPSS 18.0, it was shown that there is a correlation between mechanical properties and psychoacoustic characteristics. Tensile properties (LT), weight (T), and bending properties (2HB) showed a high correlation with psychoacoustic characteristics. Tensile linearity (LT) with Loudness (Z) showed a negative correlation coefficient; however, weight (T) with Sharpness (Z) and Roughness (Z), and bending hysteresis (2HB) with Roughness (Z) indicated positive correlation coefficients, respectively.

An Analysis of the Frictional Energy on the Rubber Block (고무 블록의 마찰에너지 해석)

  • Yoo, Hyun-Seung;Kim, Doo-Man;Lee, Sang-Ju;Ko, Bum-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.619-626
    • /
    • 2007
  • The analysis of the frictional energy of the rubber block with contact to the surface is necessary to study the wear for rubber. It is important to define the relationship of the frictional energy and wear, as the most theory of the wear of rubber product is based on the frictional energy of rubber block. To predict the life of the rubber block, the most of research has been focused on the use of the finite element analysis or the actual experiments which need the many time and expensive costs.Therefore, this research is achieved the successful results of the analysis to the frictional energy by analytic method. This frictional energy is function of the material properties, the shape of block, the vertical and horizontal load and the block moving speed. The analytical results are compared with the test results of this paper which can be used for the analysis of the friction behavior for the wear estimation of the rubber products.

A study on correlation between frictional coefficients and subjective evaluation while rubbing cosmetic product on skin (화장품을 바를 때 피부 마찰계수의 변화와 주관적인 평가와의 상관관계 연구)

  • Kwon Young-Ha;Kwon Hyun-Joon;Rang Moon-Jeong;Lee Su-Min
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.385-391
    • /
    • 2005
  • A frictional coefficients of in-vivo skin characteristic is the most important factor of the cutaneous mechanical properties ant the method of evaluating skin care in the fields of cosmetics products. In-vivo skin characteristic varies in many different ways depends on what is applied to the skin, loading condition, shape, surface roughness, and material of the probe. In this research, we designed a system which can be measured frictional coefficients of a human skin on real time. It consists of multi-components load-cell, actuator, linear motor and arm fixator. This measurement system was automatically controlled by computer. We measured frictional coefficients between probe an4 skin using this system ant inquired adjectives for subjective evaluation while rubbing cosmetic product on skin. Lastly, we analyzed correlation between two factors by calculating Pearson Correlation Coefficient. As a result, we could know that frictional coefficients varied from 0.17-1.2 according to cosmetic products, normal forte, materials and surface conditions of probe. We also confirmed sensual feelings of cosmetic products have close correlation with frictional coefficients.

  • PDF

The Friction Properties on the Loosening of Bolted Joints (I: Thread Friction Experiments) (볼트 결합부 풀림에 관한 마찰 특성 (제 I 보 : 나사 마찰 실험))

  • ;;Yanyao Jiang;Ming Zhang
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 2003
  • By using an approach developed to determine the torque-tension relationship for bolted joints, frictional properties of several typical bolted joints were studied experimentally. The specific property by bolted joints certify that the most significant influence of materials and bearing surface condition. Experiments on thread friction shows that prevailing torque nuts with distorted threads provide benefit for preventing self-loosening of the nut. Repeated tightening-loosening generally increases frictions in a bolted joint. It was noted that the data scatter of the experimental results of frictions in a belted joint may overshadow the influence of size. speed, and contact positions. The results from the experimental investigation will help to better design bolted joints.

Friction and Electrical Characteristics of Oil-impregnated Sintered-Metal Bearing with Grooves (그루브를 가진 함유소결베어링의 마찰 및 전기적 특성)

  • 정광섭;김병주;송무석;이영제
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.108-114
    • /
    • 1997
  • The electrical and frictional properties of new sintered-metal bearing (S-bearing) with varying loads and speeds were measured. Also those were compared with the same products(J-bearing) made in Japan and the conventionally used ball bearing. The test results show that the frictional values of S-bearing are less than those of J-bearing, and that S-bearing operates in full-hydrodynamic lubrication regime. The values of rating current, starting time and jitter reveal that S-bearing is superior to J-bearing as well as ball bearing.

Development of the Measurement System for Evaluating Mechanical Properties of Nano-diamond Coated Film (나노 다이아몬드 코팅박막의 기계적 특성 평가를 위한 계측시스템의 개발)

  • Kweon, Hyun Kyu;Lee, So Jin;Kweon, Yong Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • In this study, a new adhesion evaluating equipment and data processing methods were developed to overcome some limitations of existing evaluating equipment. Nano-diamond coated tool is a specimen of experiment. When applying frictional force and shear force on the specimen by a rotating polishing pad, delamination occurs at a moment. During each experiment, the vibration, load, and torque is obtained by accelerometer, loadcell and torque s+ kpensor. Frictional force and coefficient of friction are obtained by calculating torque and load. Based on FFT transformation, acceleration is processed and analyzed. As a result, the moment of delamination and the load at that time can be detected by the new developed equipment and measurement system. Finally, we call this load as an Adhesion force.