• Title/Summary/Keyword: frictional behavior

Search Result 283, Processing Time 0.029 seconds

Friction Behavior of DLC Coating Slid Against AZ31 Magnesium Alloy at Various Temperatures (마그네슘 합금에 대한 DLC 코팅의 온도에 따른 마찰기구 해석)

  • Gwon, H.;Kim, M. G.;Hur, H. L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.405-410
    • /
    • 2015
  • Sheet-forming of Mg alloys is conducted at elevated temperatures (250℃) due to the low formability at room temperature. The high-temperature process often gives rise to surface damage on the alloy (i.e. galling.) In the current study, the frictional characteristics of DLC coating slid against an AZ31 Mg alloy at various temperatures were investigated. The coating has been used widely for low-friction processes. Dry-sliding friction and galling characteristics of an AZ31 Mg alloy (disk), which slid against uncoated and a DLC-coated STD-61 steel (pin), were investigated using a reciprocating-sliding tribometer at room temperature and 250℃. To represent the real sliding phenomena during a sheet metal forming process, single-stroke tests were used (10mm stroke length) rather than a reciprocating long sliding-distance test. The DLC coating suppressed adhesion between the alloy and the tool steel at room temperature, and exhibited a low friction coefficient. However, during sliding at 250℃, severe adhesion occurred between the two surfaces, which resulted in a high friction coefficient and galling.

Tribological Properties of Carbon black added Acrylonitrile-butadiene Rubber

  • Cho, Kyung-Hoon;Lee, Yang-Bok;Lim, Dae-Soon
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.601-605
    • /
    • 2007
  • The tribological properties of acrylonitrile-butadiene rubber (NBR) filled with two kinds of carbon black filler were examined. Different types of Semi-Reinforcing Furnace (SRF), and High Abrasion Furnace (HAF) blacks were used as filler material to test the influence of carbon black particle size on the friction and wear of NBR. Results from tribological tests using a ball on disk method showed that the smaller HAF particles were more effective for reducing the wear of NBR during frictional sliding. The hardness, elastic modulus at 100% elongation, and elongation at break were measured to examine the correlation between the effects of carbon black on the mechanical and tribological properties of the NBR specimens. The wear tracks of the NBR specimens were observed with scanning electron microscopy (SEM). The wear tracks for NBR with different ratios of SRF and HAF showed clearly different abrasion patterns. Mechanisms for the friction and wear behavior of NBR with different sizes of carbon black filler were proposed using evidence from wear track observation, as well as the mechanical and tribological test results.

Numerical Investigation on Influence of Windbreak Wall Height on Dust Scattering Characteristics (저탄장 시설에 설치된 방풍벽 높이에 따른 비산탄진 확산특성에 관한 수치해석)

  • Jeong, Chan Ho;Lee, Jin Woon;Shin, Dong Whan;Kim, Myeongmin;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.136-141
    • /
    • 2014
  • This study reports numerically the characteristics of dust scattering around the coal storage pile yards, substantially affected by the windbreak wall height. The dust scattering is closely associated with the frictional effect of wind flows as well as the pressure variation that consequently affect the dust particle behavior. In the present study, with the use of the commercial code of FLUENT, the distribution of wind velocity and pressure are predicted around coal storage pile yard for four different heights of the wind break wall. From the results, it was found that for the case 1 with the outer windbreak wall height of 3 m and inner windbreak wall height of 6 m, the amount of scattering dust for a year was estimated to be 1451 kg, whereas for the case 4 where a height of outer windbreak wall is 10 m and a height of inner windbreak wall is 16 m, the amount of scattering dust for a year was 358 kg. It shows that the dust scattering can be reduced by 75%, indicating important role of windbreak wall height on particle scattering. The numerical results would be useful in decision of the appropriate height of windbreak wall for decreasing the amount of scattering dust under various environmental conditions.

Study on Tribological Behavior of Porous Anodic Aluminum Oxide with respect to Surface Coating (다공성 산화알루미늄의 표면코팅에 따른 트라이볼로지적 특성연구)

  • Kim, Young-Jin;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.275-281
    • /
    • 2017
  • In this work, we have fabricated anodic aluminum oxide (AAO) with ordered nanoscale porosity through an anodization process. We deposited gold and nano-organic thin films on the porous AAO surface to protect its structure and reduce friction. We investigated the tribological characteristics of the porous AAO with respect to the protective surface coatings using tribometers. While investigating the frictional characteristics of the samples by applying normal forces of the order of micro-Newton, we observed that AAO without a protective coating exhibits the highest friction coefficient. In the presence of protective surface coatings, the friction coefficient decreases significantly. We applied normal forces of the order of milli-Newton during the tribotests to investigate the wear characteristics of AAO, and observed that AAO without protective surface coatings experiences severe damage due to the brittle nature of the oxide layer. We observed the presence of several pieces of fractured particles in the wear track; these fractured particles lead to an increase in the friction. However, by using surface coatings such as gold thin films and nano-organic thin films, we confirmed that the thin films with nanoscale thickness protect the AAO surface without exhibiting significant wear tracks and maintain a stable friction coefficient for the duration of the tribotests.

Dynamic Behavior Analysis of Reciprocating Compressor Pistons (왕복동형 압축기 피스톤의 동적 거동 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.717-724
    • /
    • 2002
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic force and moment as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, length of the cylinder wall, and pin location on the stability of the piston.

Thermal Sprayed AlSiMg/TiC Composite Coatings : Wear Characteristics (II) (AlSiMg/TiC 복합 용사피막 : 마모 특성 (II))

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.105-111
    • /
    • 2000
  • The wear behavior of thermal sprayed AlSiMg-40TiC composite coatings were studied as a function of load and sliding velocity under unlubricated conditions. Experiments were performed using a block-on-ring(WC-6wt%/Co, Hv 1500) type. The tests were carried out a various load(30∼ 125.5N) and sliding velocity(0.5∼2.0m/s). Three wear rate regions were observed in the AlSiMg-40TiC composite coatings. The wear rate in region I at low load (less then 8N( were less than 1×{TEX}$10^{-5}${/TEX}㎣/m. Low wear rates in region I resulted from the load-bearing capacity of TiC particles. The transition from region I to II occurred when the applied load exceeded the fracture and pull-out strength of the particles. The TiC fractured particles trapped between the specimen and the counterface acted as third-body abrasive wear. The subsurface layer worn surface in region II was composed of the mechanically mixed layer (MML). The wear rate increase abruptly above a critical load (region III). The high wear rate in region III was induced by frictional temperature and involves massive surface damage.

  • PDF

Temperature Behavior in Dissimilar Butt Joint During TIG Assisted Friction Stir Welding (TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 온도 분포 특성)

  • Bang, Hee-Seon;Bijoy, M.S.
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.63-71
    • /
    • 2011
  • Three-dimensional finite element analysis is performed to study the temperature distribution phenomenon of TIG assisted friction stir welding (TAFSW) between dissimilar plates (Al 6061-T6 and stainless steel 304). TAFSW is a solid-state welding process that integrates TIG (Tungsten Inert Gas) into a friction stir welding (FSW), to preheat the harder material ahead of FSW tool during welding. In order to facilitate the industrial application of welding, 3D numerical modeling of heat transfer has been carried out applying Finite Element Method (FEM). The temperature distribution due to heat generation during TAFSW on dissimilar materials joint is analysed using in-house solver. Moving heat source along with frictional heat between the work specimens and tool surface is considered to calculate the heat input. The analytical model used predicts successfully the maximum welding temperatures that occur on the dissimilar materials during TAFSW. Comparison with the infra red camera and thermocouple measurement results shows that the results from the current numerical simulation have good agreement with the measured data.

Effects of surface characteristics of electrolytic tinplate on frictional properties during ironing operaration of 2-piece can-making process (전기주석도금강판의 표면특성이 투피스캔 제관공정의 아이어닝 가공시 마찰특성에 미치는 영향)

  • 김태엽
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Non-passivated electrolytic tinplates withour conventinal chemical treatment self-oxidize in ambient atmosphere to from yellow stain on the outermost surface during the long-term storage. The degree of yellowness of the stain increased linerly with the oxide thickness due to the interfeefence color of the $SnO_2$ Even though the thickness of the oxide layer was very thin, less than 100$\AA$ , it exerts an undesirable influence on the can-making processes, particularly the stripping behavior after ironing. Investigations were carried out on the morphologies of the coating layer, the changes in oxide thickness during successive can-making processes and the averge friction coefficients with the different oxide thinkness. These oxide layers were broken up and distributed within the bulk tin coating during the ironing process. This redistribution of the oxide layer prvented smooth pressing-aside of the tin coating layer, resulting in an increase in the ironing friction coefficient. As the friction was increased, the residual stress along the can wall thinkness(i.e., the hoop stress) was also increased. Due to both the oxibe layer accumulation, which increased the friction coefficient, and the hoop stress, can stripping efficiency without roll-back is reduced.

  • PDF

Multiple Cracking Model of Fiber Reinforced High Performance Cementitious Composites under Uniaxial Tension

  • Wu, Xiangguo;Han, Sang-Mook
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.71-77
    • /
    • 2009
  • A theoretical model of multiple cracking failure mechanism is proposed herein for fiber reinforced high performance Cementitious composites. By introducing partial debonding energy dissipation on non-first cracking plane and fiber reinforcing parameter, the failure mechanism model of multiple cracking is established based on the equilibrium assumption of total energy dissipation on the first crack plane and non-first cracking plane. Based on the assumption of the first crack to be the final failure crack, energy dissipation terms including complete debonding energy, partial debonding energy, strain energy of steel fiber, frictional energy, and matrix fracture energy have been modified and simplified. By comparing multiple cracking number and energy dissipations with experiment results of the reference's data, it indicates that this model can describe the multiple cracking behavior of fiber reinforced high performance cementitious composites and the influence of the partial debonding term on energy dissipation is significant. The model proposed may lay a foundation for the predictions of the first cracking capacity and post cracking capacity of fiber reinforced high performance cementitious composites and also can be a reference for optimal mixture for construction cost.

Composite action in connection regions of concrete-filled steel tube columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.47-64
    • /
    • 2003
  • In a nonlinear finite element study on the mechanical behavior of simple beam connections to continuous concrete-filled steel tube columns, two principally different connection types were analyzed: one with plates attached to the outside of the tube wall, relying on shear transfer, and one with an extended plate inserted through the steel section to ensure bearing on the concrete core. The load was applied partly at the connection within the column length and partly at the top, representing the load from upper stories of a multistory building. The primary focus was on the increased demand for load transfer to ensure composite action when concrete with higher compressive strength is used. The results obtained from the analyses showed that the design bond strength derived from push tests is very conservative, mainly due to the high frictional shear resistance offered by pinching and contraction effects caused by connection rotation. However, with higher concrete strength the demand for load transfer increases, and is hard to fulfill for higher loads when connections are attached only to the steel section. Instead, the connection should penetrate into the concrete core to distribute load to the concrete by direct bearing.