• Title/Summary/Keyword: frictional behavior

Search Result 283, Processing Time 0.026 seconds

Friction Dynamics of Lip Seals

  • Wassink, D.A.;Lenss, V.G.;Levitt, J.A.;Ludema, K.C.;Samus, M.A.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.87-92
    • /
    • 1995
  • Lip seals, important components in many hydraulic devices, dissipate energy through friction, resulting in power loss. This study contributes to an understanding of lip seal friction by further exploring the connections between friction behavior, viscoelastic properties of robber and viscous properties of the lubricant. Experiments haven been conducted for short stroke oscillations, where these connections are quite strong. Sliding friction experiments at a variety of pressures, temperatures and oscillation rates (for different seal materials, surface roughnesses and lubricant viscosities) are examined. Speculative explanations are suggested for conditions under which friction maxima and frictional vibrations occur.

A Study on the Dynamic Behaviors of a Disk Brake for a High-Speed Train (고속전철용 디스크 브레이크의 동적거동 특성에 관한 연구)

  • 조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.276-282
    • /
    • 1999
  • Using a coupled thermal-mechanical analysis, the dynamic distortion of the ventilated disk brakes has been presented for a high-speed train. The offset ratio between the maximum and minimum values of the thermal distortions has been analyzed as a function of a braking number. The computed FEM results show that the offset ratios in radial direction are much greater than those of circumferentially distorted components. This means that the axial distortions in radial direction may dominantly produce thermally caused wears and cracks at the rubbing surfaces.

  • PDF

Numerical Study on Chaotic Dynamics of Repeated Impacts with Friction - Vibratory Bowl Feeders (마찰력이 개재된 반복충돌 혼돈 동역학의 수치해석적 연구 -진동보울피더)

  • Han, In-Hwan;Lee, Yun-Jae;Yoon, Koo-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.143-152
    • /
    • 1996
  • The vibratory bowl feeder is the most versatile of all hopper feeding devices for small engineering parts, and the typical nonlinear dynamic system experiencing repeated impacts with friction. We model and analyze the dynamic behavior of a single part on the vibrating track of the bowl feeder. While the previous studies are restricted to the sliding regime, we focus our analysis on the hopping regime where the high conveying rate is available. We present the numerical analysis results for conveying rate and frictional impact process both in periodic and chaotic regimes. We examined the dynamic effects from the variation of several physical parameters, and presented the important features for the design of the vibratory bowl feeder. This research holds much potential for leverage over design problems of wide range of mechanisms and tools with repeated collisions.

  • PDF

A Theoretical and Experimental Study on the Tribological Size Effect in Microforming Processes (마이크로 성형에서 마찰거동의 크기효과에 대한 이론적 및 실험적 연구)

  • Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.394-400
    • /
    • 2013
  • Microforming is a very efficient and economical technology to fabricate very small metallic parts in various applications. In order to extend the use of this forming technology for the production of microparts, the size effect, which occurs with the reduction of part size and affects the forming process significantly, must be thoroughly investigated. In this study, the tribological size effect in microforming was studied using modeling and scaled ring compression experiments. A micro-scale friction approach based on the slip-line field theory and lubricant pocket model was used to understand the friction mechanism and explain the tribological size effect. Ring compression tests were performed to analyze the interfacial friction condition from the deformation characteristics of the ring specimens. In addition, finite element analysis results were utilized to quantitatively determine the size-dependent frictional behavior of materials in various process conditions. By comparing theoretical results and experimental measurements for different size factors, the accuracy and reliability of the model were verified.

Tribological Behaviors of Chromium Carbide Coatings by HVOF Thermal Spraying (HVOF 열용사에 의한 크롬 카바이드 코팅의 마모.마찰거동)

  • 김장엽;임대순;이상로;변응선;이구현
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1315-1321
    • /
    • 1995
  • The optimal coating condition for chrominum carbide coating was selected by Taguchi method. The wear tests with coated specimens by HVOF method were performed in the temperature to 80$0^{\circ}C$. Applied normal loads were selected to be from 8N to 30N. The worn surfaces and subsurfaces were characterized by XRD, EPMA, AES and SEM. The wear track increased with increasing applied normal load, and in terms of the temperature range from 400 to $600^{\circ}C$, below that range, the wear track increased, and above that temperature ragne, the wear track decreased. The degree of oxidation caused by the test temperature and the frictional heating was responsible to the unique high temperature wear behavior chromium carbide coatings.

  • PDF

Influence of Frictional Behavior Depending on Contact Pressure on Springback at U Draw Bending (접촉 압력에 의한 마찰 특성 변화가 U 드로우 굽힘에서의 스프링백에 미치는 영향)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.344-349
    • /
    • 2011
  • Variation of contact pressure causes change of friction coefficient, which in turn changes stress distribution in the sheet being formed and final springback. In the present study, U-draw bending experiments were carried out under constant blank holding force(BHF) and different blank sizes, and finite element analysis was conducted with and without considering contact pressure effect on friction. When the BHF was sufficiently high, the degree of springback was different between constant blank holding pressure condition and that with varying blank holding pressure. Finite element analysis considering the influence of contact pressure effect on friction could explain the occurrence of springback.

A Study on the Recycling of Metals and Removal of Organics By Electrochemical Treatment of Mixed Waste Water of Surface Finishing Industry (표면처리 공정에서 발생하는 혼합 폐수의 전기화학적 처리에 의한 중금속의 재활용 및 유기물의 제거에 관한 연구)

  • 김영석;이중배
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.184-193
    • /
    • 2003
  • Cyclic sweep voltametry was performed to investigate the electrochemical behavior of heavy metal ions and the organic additives in surface finishing process. And electrolysis using parallel plate electrode electrolyzer was carried out to simulate the treatment of real waste water. Results showed that more than 99 percent of Cu was recovered and selective recovery of Cu in mixed waste water was possible, but the possibility of economical recovery of Ni and Cr were very low due to the evolution of hydrogen gas. Electrochemical oxidation of cyanide and organic additives on anode showed very excellent removal rate. The complete removal of several hundred ppm of cynide was possible within several tens minutes and organics within 2 or 3 hours. Even in case of concentrate waste water, the complete removal of COD by using NaCl and air stirring seemed to be possible.

Interface Frictional Characteristics of Geotextile Container for the Restoration of Roadbed swept away by Rainfall (강우로 유실된 철도노반 보수용 토목섬유 콘테이너의 상호마찰 특성)

  • 황선근;최찬용;신은철;이명호
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.587-595
    • /
    • 2002
  • Geotextile containers for restoration of slopes form the interface between the containers during the restored to lost slopes, and therefore the relation displacements are developed including the sliding on the surface. Since, the shear strength on these interfaces is less than that of fill material in the container, the characteristics of shear strength on the interface governs the behavior of the restoration slopes. In general, a lot of natural properties of geotexiles is required to evaluate the safty of the geotextiles, Among the properties, the shear characteristics between geotextiles and soil is a important variable to assess the safety. From the results of full scale direct shear test, the residual shear strength is recommanded to use for design factors since a large deformation possibly occures on the geotextile containers.

  • PDF

A Numerical Analysis of Soil-Pile Systems for Pile Load Tests at a Korean Site (국내 말뚝재하시험에 대한 지반-말뚝계의 수치해석)

  • Oh, Se-Boong;Ahn, Tae-Kyong;Choi, Yong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.94-104
    • /
    • 1999
  • In order to evaluate the performance of axially of laterally loaded piles experimentaly, pile load tests can be carried out at the site Otherwise stress analyses or subgrade reaction analyses can solve the problem. In this study, stress analysis using FLAC code and subgrade reaction analyses using load transfer curves recommended by API(1993) were performed consistently on the basis of a result of site investigations, and the result of analyses was compared with the measured. As a result the behavior of pile heads was analyzed accurately for both axially and laterally loaded tests. Furthermore axially transferred loads were calculated appropriately for the measured and axial loads were transferred mainly mainly by the frictional resistance rather than by the tip resistance. Consequently, it can be commented that both analysis methods of soil-pile systems are applicable at teh objective site and that solutions may be more accurate if material properties from the site investigation are more explicit.

  • PDF

A new proposed Friction Multi-layered Elastomeric Seismic Isolator (FMESI)

  • Mirali-Katouli, Gholamali;Abdollahzadeh, Gholamreza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.407-416
    • /
    • 2021
  • Seismic isolation is one of the best-advanced methods for controlling seismic vibrations in buildings, bridges and nuclear facilities. A new Friction Multi-Layer Elastomeric Seismic Isolator (FMESI) has been modeled, analyzed and investigated by ABAQUS finite element analysis software and then, compared to real models. A number of friction cores have been used instead of the lead core therefore, some of the previous isolator problems have been almost resolved. Moreover, Studies show that the proposed isolator provides suitable initial stiffness and acceptable hysteresis behavior under different vertical and horizontal loading conditions and also internal stresses in different layers are acceptable. Also, as a result, the initial stiffness and overall area of the curves increase, as friction coefficients of the cores increase, although the frictional coefficients must be within a certain range.