• Title/Summary/Keyword: friction-contact method

Search Result 305, Processing Time 0.025 seconds

Rigid-Plastic FE Modeling of Frictional Contact Problems based on a Penalty Method (벌칙방법에 의한 마찰 접촉문제의 강소성 유한요소 모델링)

  • 장동환;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • This paper presents a rigid-plastic finite element method to handle the frictional contact problem between two deformable bodies experiencing large deformation. The variational formulation combined with incremental quasi-static model is employed for treating the contact boundary condition. The frictional behavior of the model obeys Coulomb's law of friction. The proposed contact algorithms are classified into two categories, one for searching contacting nodes and the other for calculating contact forces at the contact surface. A slave node and master contact segment are defined using the geometric condition of finite elements on the contact interface. The penalty parameter is used to limit the penetration between contacting bodies, and the finite elements are coupled with contact boundary elements.us gates and cavity thicknesses. Through this study we have observed that the jetting is related to the die swell of material. This means that the jotting is strongly affected by the elastic flow property rather than the viscous flow property in viscoelastic characteristics of molten polymer. Different resins have different elastic properties, and elastic flow behavior depends on the shear rate of flow, i.e. injection speed. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mole design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting regardless of amount of elasticity of polymer melt.

A Study on the Friction Characteristics of Tappet by Low Friction Coating (저마찰 박막코팅 적용 타펫 부품의 마찰 특성에 관한 연구)

  • Seo, Joon-Ho;Lim, Dae-Soon;Na, Byung-Chul
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.265-269
    • /
    • 2009
  • The wear of the contact in the tappet accounts for the greatest portion of entire friction loss of an engine, leading to the occurrence of abnormal wear. The coated specimens for earn-tappet wear test were producted by using PVD-Sputtering coating method. It examined the friction characteristics occurring between the earn and the tappet by using the dedicated wear tester and found that the friction torque value was reduced through comparison testing with the existing part when the low friction coating was applied. So application of the low friction coating to actual vehicles will reduce the fuel economy and occurrence of noise-vibration.

Analysis of Drawbead Process by Static-Explicit Finite Element Method

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1687-1692
    • /
    • 2002
  • The problem analyzed here is a sheet metal forming process which requires a drawbead. The drawbead provides the sheet metal enough tension to be deformed plastically along the punch face and consequently, ensures a proper shape of final products by fixing the sheet to the die. Therefore, the optimum design of drawbead is indispensable in obtaining the desired formability. A static-explicit finite element analysis is carried out to provide a perspective tool for designing the drawbead. The finite element formulation is constructed from static equilibrium equation and takes into account the boundary condition that involves a proper contact condition. The deformation behavior of sheet material is formulated by the elastic-plastic constitutive equation. The finite element formulation has been solved based on an existing method that is called the static-explicit method. The main features of the static-explicit method are first that there is no convergence problem. Second, the problem of contact and friction is easily solved by application of very small time interval. During the analysis of drawbead processes, the strain distribution and the drawing force on drawbead can be analyzed. And the effects of bead shape and number of beads on sheet forming processes were investigated. The results of the static explicit analysis of drawbead processes show no convergence problem and comparatively accurate results even though severe high geometric and contact-friction nonlinearity. Moreover, the computational results of a static-explicit finite element analysis can supply very valuable information for designing the drawbead process in which the defects of final sheet product can be removed.

Method of Friction Energy Dissipation and Crack Analysis under Partial Slip (부분 미끄럼 상태에서의 마찰에너지 방출 및 균열해석 방법)

  • 김형규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.38-46
    • /
    • 1999
  • Numerical methods are procured for evaluating the contact stresses, the dissipation of friction energy density and the fatigue cracking emanated from the contact surface under the partial slip condition. A rounded punch is used for the indenter pressing and slipping on the elastic half plane. Plane strain condition is assumed for the present analysis. Several sample calculations are carried out to investigate the effect of the punch roundness, the shear load path, and the crack obliquity and closure on the failure. It is found that the present methods can be a useful tool for studying the physical failure of the of the contacting materials such as fretting wear and fretting fatigue cracking.

  • PDF

The Effects of Design Parameters on the Friction Characteristics in the Valve Train System

  • Kim, Ji-Young;Han, Dong-Chul;Cho, Myung-Rae
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.75-79
    • /
    • 2001
  • This paper is a report on the parametric study of the friction characteristics on the direct acting type OHC valve train system. The numerical simulation was performed by using the IV-TAP. Dynamic analysis by using the lumped mass method was previously performed to define the acting load. The friction characteristics were analyzed by using the partial asperity contact model. The effects of operating conditions and major design parameters on the total driving torque were investigated. From the analytical prediction, it is found that valve spring stillness, surface roughness, and base circle radius are the main factors to reduce the frictional loss on the valve train system.

  • PDF

Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission (클러치 드래그 토크에 미치는 마찰재 면적 및 클리어런스의 영향)

  • Ryu, Jin Seok;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.337-342
    • /
    • 2014
  • The reduction of drag torque is an important research issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because of the viscous drag generated by the transmission fluid in a narrow gap (clearance) between the friction plate and a separate plate. The objective of this paper is to observe the effects of the friction plate area and the clearance on the drag torque using finite element simulation. The two-phase flow of air and oil fluid is considered and modeled for the simulation. The simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. The clearance between the two plates plays an important role in controlling drag torque peak. An increase in the clearance causes a decrease in shear stress; thus, the drag torque also decreases according to Newton's law of viscosity. An observation of the effect of the area of contact between transmission fluid and friction plate shows that the drag torque increases with the contact area. The flow vectors inside the flow channel present clear evidence that the velocity of the fluid flows is faster with a larger friction plate, that is, in the case of a larger contact area. Therefore, the optimum size of the friction plate should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.

Comparison of GPU-Based Numerous Particles Simulation and Experiment (GPU 기반 대량입자 거동 시뮬레이션과 실험비교)

  • Park, Sang Wook;Jun, Chul Woong;Sohn, Jeong Hyun;Lee, Jae Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.751-756
    • /
    • 2014
  • The dynamic behavior of numerous grains interacting with each other can be easily observed. In this study, this dynamic behavior was analyzed based on the contact between numerous grains. The discrete element method was used for analyzing the dynamic behavior of each particle and the neighboring-cell algorithm was employed for detecting their contact. The Hertzian and tangential sliding friction contact models were used for calculating the contact force acting between the particles. A GPU-based parallel program was developed for conducting the computer simulation and calculating the numerous contacts. The dam break experiment was performed to verify the simulation results. The reliability of the program was verified by comparing the results of the simulation with those of the experiment.

A Study on Contact Characteristics of Mechanical Face Seals for a Hydro-power Turbine Depending on the Rubbing Surface Geometry (소수력 터빈용 기계평면시일의 표면마찰형상에 따른 접촉특성 해석에관한 연구)

  • Kim Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.119-126
    • /
    • 2006
  • In this paper, the contact behavior characteristics of a primary sealing components such as a seal ring and a seal seat has been presented for a small hydro-power turbine. Using the non-linear FEM analysis, the maximum temperature, the axial displacement, radial differences between a seal ring and a seal seat, and maximum contact normal stress have been analyzed for three optimized sealing profiles in which are designed based on the FEM analysis and Taguchi's experimental method. The three primary sealing profiles between a seal ring and a seal seat are strongly related to a leakage of a water for a hydro-power turbine and wear of a primary sealing component. The computed results show that the contact rubbing area between a seal ring and a seal seat is very important for reducing a friction heating and wear in a sealing gap, and increasing a contact normal stress in primary sealing components. Based on the FEM computation, models II and III in which have a small rubbing surface of seal rings show low dilatation of primary sealing components, and high normal contact stress between a seal ring and a seal seat. Thus, the FEM computed results recommend a short contacting width of a primary sealing component for reducing a leakage and thermal distortions, and expanding a seal life. This means that a conventional primary sealing component may be switched to a reduced sealing face of seal rings.

금속절삭시 CHIP 생성기구 및 절삭온도 예측을 위한 유한요소해석에 관한 연구

  • 황준;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.22-27
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting. This paper introduces some effects, such constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angles and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool, cutting temperature. Under the usual [lane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and rake angles. In this analysis, various cutting speeds and depth of cut are adopted. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Cutting temperature and Thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

Contact Stress Analysis of Artificial Hip Joints Using Finite Element Method (유한요소법을 이용한 인공 고관절의 접촉응력 해석에 관한 연구)

  • Kim, Chung-Kyun;Yoon, Jong-Deok
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.82-87
    • /
    • 1997
  • The modern orthopaedics frequently uses the total hip replacement in the artificial hip joint. The wear in this joint requires a re-replacement of hip joints because it is under the severe load and friction conditions. To solve these problems the previous studies have been mainly focussed on the development of new materials. The research of new materials, however, needs much time and effort since it should be experimented for its bio-compatibility, friction, and wear characteristics. To reduce the work, in this study, the finite element analysis is applied to find new combinations of bio-materials in the total hip replacement which has the excellent contact characteristics. A non-linear FEM program MARC with 5-node axisymmetric element was used for analyzing the contact stresses between the hip joints. The computed results show that in case of acetabulum UHMWP has good characteristics, in femoral head, $Al_2O_3$, and in stem, Ti6Al4V.