• Title/Summary/Keyword: friction stir welding (FSW)

Search Result 131, Processing Time 0.023 seconds

Mechanical Properties and Microstructure on Dissimilar Friction-Stir-Weld of Aluminium Alloys (FSW된 이종알루미늄합금의 접합 특성 및 미세 조직)

  • Han, Min-Su;Jang, Seok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.75-81
    • /
    • 2011
  • Dissimilar joining of aluminum 6061-T6 alloy to aluminum 5083-O alloy was performed using friction-stir welding technique. The mechanical properties, hardness, macro- and micro-structure on dissimilar friction-stir-weld aluminium alloy were investigated. Mechanical properties of the weld mainly depend on which Al alloy is placed at the retreating sides of the rotating tool respectively during dissimilar friction-stir weld because the microstructure of stir zone was mainly composed of welded Al alloys of the retreating side. Onion ring pattern was observed like lamella structure stacked by each Al alloy in turn. It apparently results in defect-free weld zone that traverse speed was changed to 124 mm/min under conditions of tool rotation speed like 1250 rpm with 5 mm of tool's prove diameter, 4.5 mm of prove length, 20 mm of shoulder diameter, and $2^{\circ}$ of tilting angle. The 231 MPa of ultimate stress and the 121 MPa of yield point are obtained about the friction-stir-welded Al 6061-T6(AS) to Al 5083-O(RS).

The joints properties of Friction stir welded Al 2024 alloy (2024 알루미늄 합금의 마찰교반용접 특성)

  • 김선규;이창용;이원배;연윤모;정승부
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.165-167
    • /
    • 2004
  • 마찰교반접합(FSW, Friction Stir Welding)은 영국 TWI에 의해 1991년에 개발되어 특허가 출원된 후 90년대 중반부터 산업에 적용되었으며, 짧은 시간동안에 실용화가 이루어졌다. 이 기술이 적용되기 전, Al 합금의 접합은 MIG(Metal Inert Gas)나 TIG(Tungsgten Inert Gas)와 같은 접합이 주로 이용되어 왔으나, 이들 접합기술은 접합부의 표면문제, 변형, 결함 등으로 인하여 Al 합금의 구조물 적용에 큰 문제점이 야기되어왔다. (중략)

  • PDF

FSW Process Optimization for Al 2519 Alloys and Its Joint Characteristics(II) (후육 고강도 Al 2519합금의 FSW 접합기술 및 접합부 특성(II))

  • Kim, Heung-Ju;Jang, Ung-Seong;Yang, Gwang-Ha;Bang, Han-Seo
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.174-176
    • /
    • 2005
  • On the basis of successful experiences and data from author's past experimental results of friction stir welding on thin aluminum plates, thick aluminum plate of high strength 2000 series has been carried out in this study. For various combination of rotating speed, welding speed and tool (RIWRC38-C) shape, the butt welded specimens has been prepared to check the metallurgical characteristics, hardness distributions and defects. From the results, feasible welding conditions have been obtained as 450 rpm rotating speed and 5 mm/min welding speed. Using these optimum welding parameters, 38.1mm-thickness A2519-T87 plates have been FSWelded in single pass. A good weld surface appearance and defects free weld zone has been observed in X-ray inspection. Softened region has been generated by dissolution of precipitates and coarsened microstructure in the stir zone after FSWeld.

  • PDF

Microstructures and Mechanical Properties of Friction Stir Welds of Oxygen Free Copper (FSW에 의한 무산소동 접합부의 조직 및 기계적 성질)

  • Park Hwa-Soon;Lee Byung-Woo
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.77-85
    • /
    • 2005
  • The structures and mechanical properties of friction stirred welds of oxygen free copper(OFC) sheet were investigated. Defect-free welds were obtained in a relatively wide range of the welding conditions from 1000 to 2000 rpm, and welding speed from 500 to 2000 mm/min. The microstructure of the stirred zone(SZ) showed recrystallized grains, and the gram size varied largely with the welding conditions. The SZ hardness values including those of all the optimum welding conditions were slightly lower than that of the base metal, and increased with decreasing heat input. The tensile strength of the all-SZ increased with increasing the hardness values. The Hall-Fetch relationship was confirmed between the yield strength of the all-52 and the recrystallized grain size of the SZ.

A Study on Friction stir welding Properties of Extruded Aluminum Panels for Rolling Stock (철도차량용 알루미늄 압출 패널의 마찰교반용접 특성에 관한 연구)

  • Park, Young-Bin;Goo, Byeong-Choon;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2053-2058
    • /
    • 2008
  • Extruded aluminium panels have been widely used for railway vehicle structures because of their light specific weight and other merit. In the past, GMAW (Gas Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) were mainly used to join aluminium panels. But recently friction stir welding (FSW) is widely used. due to its lots of advantage. In this study aluminium A6005-T6 which are used for car body structures was chosen. The influence of main parameters such as : pin rotating speed, welding speed, shoulder diameter, pin length and tilting angle on mechanical properties was examined. Optical microscope observation, micro hardness test and tensile test were carried out. Tensile strength of the stir welded plates is 74% of that of the base material.

  • PDF

Effects of Tool Rotation and Transition Speed during Friction Stir Welding of Al 7075-T651 Alloy (Al 7075-T651의 마찰교반 용접에 대한 회전속도와 이송속도의 영향)

  • Han, Min-Su;Jeon, Jeong-Il;Jang, Seok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.532-539
    • /
    • 2007
  • The 7075-T651 Al alloy was welded by friction stir welding. Microstructure, macro behaviors and fracture type in the nugget, thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ) of the welded part were compared to base metal. The microsturctures of nugget zone were compared with tool rotation speeds and various tool transition speed. When the rotation speeds were decreased and transition speeds were increased, the hardness of nugget zone were decreased. Also, the optimal microstructure was observed at the low rotation speed of 800rpm and the high transition speed of 124mm/min. The transgranular dimple and quasi-cleavage at fractured part of nugget zone were investigated.

Experimental Comparison of Weld Zone Properties for $2mm^{t}$ Aluminum Alloy Sheets Friction-Stir-Welded using Milling Machine. (마찰용접 된 박판재의 용접부 특성에 대한 실험 비교)

  • Han, Min-Su;Jang, Seok-Ki;Lee, Don-Chool
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1747-1751
    • /
    • 2003
  • The paper shows properties such as vickers hardness, yielding and ultimate stresses for the weld zone of the butt and the lap jointed specimens, and compare maximum loads, stress-strain curves, deformation appearance after guided bending test and fracture appearance for butt and lap jointed specimens. The research in this experiment also shows the weldability of the butt joint specimen is better than that of the lap joint specimen using FSW with $2mm^{t}$ aluminum alloy sheet in milling machine.

  • PDF

Optimal Welding Design for FSW Based on Micro Strength by MSP Test (MSP시험의 미세강도에 의한 FSW 최적용접설계)

  • Yang, Sungmo;Kang, HeeYong;Jeong, Byeongho;Yu, Hyosun;Son, Indeok;Choi, Seungjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.425-431
    • /
    • 2016
  • The usage of Friction Stir Welding(FSW) technology has been increasing in order to reduce the weight in automobile industries. Previous studies that investigated on the FSW have focused on the aluminum alloy. In this study, Al6061-T6 alloy plates having 5 mm of thickness were welded under nine different conditions from three tool rotation speeds: 900, 1000 and 1100 rpm, and three feed rates: 270, 300 and 330 mm/min. Specimen size of Micro Shear Punch(MSP) test was $10{\times}10{\times}0.5mm$. The mechanical properties were evaluated by MSP test and Analysis of Variance (ANOVA). The specimens were classified by advancing side(AS), retreating side(RS), and center(C) of width of tool shoulder. The optimal welding condition of FSW based on micro strengh was obtained when the tool rotation speed was 1100 rpm and the feed rate was 300 mm/min. The maximum load measured AS, RS, and C in the weldment was measured 554.7 N, 642.9 N, and 579.2 N, respectively.

Evaluation of FSW Weldability of Wrought and Casting Mg Alloys (전신 및 주조된 Mg합금의 FSW 접합성 평가)

  • Noh Joong-Suk;Kim Heung-Ju;Chang Woong-Seong;Bang Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.53-57
    • /
    • 2004
  • Friction stir weldability of AZ31B-H24, AZ61A-F and AZ91C-F Mg alloys were studied using microstructural observation and mechanical tests. The microstructure of stir zone(SZ) was coarse in AZ31B-H24 alloy whereas it was very fine both in AZ61A-F and AZ91C-F alloys. The hardness of SZ was remarkably increased by very fine recrystallized grains both in AZ61A-F and AZ91C-F alloys. On the other hand, the hardness of SZ was decreased in AZ31B-H24 due to the coarse microstructure. In SZ, AZ91C-F alloy showed very high hardness values because of dispersion hardening of $Mg_{17}$Al$_{12}$($\beta$ phase) and Al solid solution hardening. Because of more $Mg_{ 17}Al_{12}($\beta$ phase)$ intermetallic compounds, Mg alloy with high Al content showed poor mechanical properties.s.

Characteristics of Friction Stir Lap Welded A5052 with Probe Length (프루브 길이에 따른 A5052 겹치기 마찰교반접합 특성)

  • Ko, Young-Bong;Kang, Chae-Won;Choi, Jun-Woong;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.294-300
    • /
    • 2009
  • The Friction Stir Welding (FSW) has mainly been used for making butt joints in Al alloys. The development of Friction Stir Lap Welding (FSLW) would expand the number of applications. In this study, for effective application on thin aluminum alloy lap joint, non-heat treatment A5052 alloys were joined by FSLW with the length of probe 2.3 mm and 3.0 mm. Investigating the characteristics of joint area showed the results were as below ; When the length of probe was 2.3 mm, good joint area was formed at all welding condition except for 600 rpm-700 mm/min. In the case of 3.0 mm probe length, there was formed good joint area without defects at 1500 rpm-100 mm/min. The width of joint area, position and size of defects were very important factors for FSLW, due to heat input and stirring intensity.